高中数学《2.1 数列的概念与简单表示法》教案 新人教a版必修5

高中数学《2.1 数列的概念与简单表示法》教案 新人教a版必修5

ID:29370990

大小:109.50 KB

页数:4页

时间:2018-12-19

高中数学《2.1 数列的概念与简单表示法》教案 新人教a版必修5_第1页
高中数学《2.1 数列的概念与简单表示法》教案 新人教a版必修5_第2页
高中数学《2.1 数列的概念与简单表示法》教案 新人教a版必修5_第3页
高中数学《2.1 数列的概念与简单表示法》教案 新人教a版必修5_第4页
资源描述:

《高中数学《2.1 数列的概念与简单表示法》教案 新人教a版必修5》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、课题:2.1.1数列的概念与简单表示法(1)主备人:执教者:【学习目标】1、理解数列的概念;2、认识数列是反映自然规律的基本数学模型;3、初步掌握数列的一种表示方法——通项公式;【学习重点】数列及其有关概念,通项公式及其应用.【学习难点】根据一些数列的前几项抽象、归纳数列的通项公式.【授课类型】新授课【教具】多媒体电脑、实物投影仪、电子白板。【学习方法】诱思探究法【学习过程】一、复习引入:师课本图2.1-1中的三角形数分别是多少?生1,3,6,10,….师图2.1-2中的正方形数呢?生1,4,9,16,25,…

2、.师像这样按一定次序排列的一列数你能否再举一些?生-1的正整数次幂:-1,1,-1,1,…;无穷多个数1排成一列数:1,1,1,1,….生一些分数排成的一列数:,,,,,….二、新课学习:折纸问题师请同学们想一想,一张纸可以重复对折多少次?请同学们随便取一张纸试试生一般折5、6次就不能折下去了,厚度太高了.师你知道这是为什么吗?我们设纸原来的厚度为1长度单位,面积为1面积单位,随依次折的次数,它的厚度和每层纸的面积依次怎样?生随着对折数厚度依次为:2,4,8,16,…,256,…;①随着对折数面积依次为

3、,,,,…,,….生对折8次以后,纸的厚度为原来的256倍,其面积为原来的1/256,再折下去太困难了.师说得很好,随数学水平的提高,我们的思维会更加理性化.请同学们观察上面我们列出的这一列一列的数,看它们有何共同特点?生均是一列数.生还有一定次序.师它们的共同特点:都是有一定次序的一列数.[教师精讲]1.数列的定义:按一定顺序排列着的一列数叫做数列.注意:个性设计(1)数列的数是按一定次序排列的,因此,如果组成两个数列的数相同而排列次序不同,那么它们就是不同的数列;(2)定义中并没有规定数列中的数必须

4、不同,因此,同一个数在数列中可以重复出现.2.数列的项:数列中的每一个数都叫做这个数列的项.各项依次叫做这个数列的第1项(或首项),第2项,…,第n项,….同学们能举例说明吗?生例如,上述例子均是数列,其中①中,“2”是这个数列的第1项(或首项),“16”是这个数列中的第4项.3.数列的分类:1)根据数列项数的多少分:有穷数列:项数有限的数列.例如数列1,2,3,4,5,6是有穷数列.无穷数列:项数无限的数列.例如数列1,2,3,4,5,6…是无穷数列.2)根据数列项的大小分:递增数列:从第2项起,每一

5、项都不小于它的前一项的数列.递减数列:从第2项起,每一项都不大于它的前一项的数列.常数数列:各项相等的数列.摆动数列:从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列.请同学们观察:课本P33的六组数列,哪些是递增数列、递减数列、常数数列、摆动数列?生这六组数列分别是(1)递增数列,(2)递增数列,(3)常数数列,(4)递减数列,(5)摆动数列,(6)1.递增数列,2.递减数列.[知识拓展]师你能说出上述数列①中的256是这数列的第多少项?能否写出它的第n项?生256是这数列的第8项,我能写出它

6、的第n项,应为an=2n.[合作探究]同学们看数列2,4,8,16,…,256,…①中项与项之间的对应关系,项   2  4  8  16  32↓↓↓↓↓序号12345你能从中得到什么启示?生数列可以看作是一个定义域为正整数集N*(或它的有限子集{1,2,3,…,n})的函数an=f(n),当自变量从小到大依次取值时对应的一列函数值.反过来,对于函数y=f(x),如果f(i)(i=1、2、3、4…)有意义,那么我们可以得到一个数列f(1),f(2),f(3),…,f(n),….师说的很好.如果数列{an

7、}的第n项an与n之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式.三、特例示范1.根据下面数列{an}的通项公式,写出前5项:(1)an=;(2)an=(-1)n·n.师由通项公式定义可知,只要将通项公式中n依次取1,2,3,4,5,即可得到数列的前5项.2.根据下面数列的前几项的值,写出数列的一个通项公式:(1)3,5,7,9,11,…;(2),,,,,…;(3)0,1,0,1,0,1,…;(4)1,3,3,5,5,7,7,9,9,…;(5)2,-6,12,-20,30,-42,….

8、这是由“数”给出数列的“式”的例子,解决的关键是要找出这列数呈现出的规律性的东西,然后再通过归纳写出这个数列的通项公式.[合作探究]师函数与数列的比较(由学生完成此表):函数数列(特殊的函数)定义域R或R的子集N*或它的有限子集{1,2,…,n}解析式y=f(x)an=f(n)图象点的集合一些离散的点的集合师

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。