欢迎来到天天文库
浏览记录
ID:29587057
大小:368.56 KB
页数:6页
时间:2018-12-21
《高中数学 3.2.1 几类不同增长的函数模型学案 新人教a版必修1》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、3.2.1 几类不同增长的函数模型[学习目标] 1.掌握常见增长函数的定义、图象、性质,并体会其增长快慢;理解直线上升,对数增长,指数爆炸的含义.2.会分析具体的实际问题,建模解决实际问题.[预习导引]1.三种函数模型的性质 函数性质y=ax(a>1)y=logax(a>1)y=xn(n>0)在(0,+∞)上的增减性单调递增单调递增单调递增图象的变化随x增大逐渐变陡随x增大逐渐变缓随n值而不同2.三种函数的增长速度比较(1)在区间(0,+∞)上,函数y=ax(a>1),y=logax(a>1)和y=xn(n>0)都是增函数,但增长速度不同,且不在同一个“档次”上.(2)在区间(0,+
2、∞)上随着x的增大,y=ax(a>1)增长速度越来越快,会超过并远远大于y=xn(n>0)的增长速度,而y=logax(a>1)的增长速度则会越来越慢.(3)存在一个x0,使得当x>x0时,有logax<xn<ax.要点一 函数模型的增长差异例1 (1)当x越来越大时,下列函数中,增长速度最快的应该是( )A.y=10000xB.y=log2xC.y=x1000D.y=x(2)四个变量y1,y2,y3,y4随变量x变化的数据如下表:x151015202530y1226101226401626901y22321024327681.05×1063.36×1071.07×109y32102
3、030405060y424.3225.3225.9076.3226.6446.907关于x呈指数函数变化的变量是________.跟踪演练1 如图给出了红豆生长时间t(月)与枝数y(枝)的散点图,那么最能拟合诗句“红豆生南国,春来发几枝”所提到的红豆生长时间与枝数的关系的函数模型是( )A.指数函数:y=2tB.对数函数:y=log2tC.幂函数:y=t3D.二次函数:y=2t2要点二 几种函数模型的比较例2 某汽车制造商在2013年初公告:随着金融危机的解除,公司计划2013年生产目标定为43万辆.已知该公司近三年的汽车生产量如下表所示:年份201020112012产量8(万)18
4、(万)30(万)如果我们分别将2010,2011,2012,2013定义为第一、二、三、四年.现在你有两个函数模型:二次函数模型f(x)=ax2+bx+c(a≠0),指数函数模型g(x)=a·bx+c(a≠0,b>0,b≠1),哪个模型能更好地反映该公司年销量y与年份x的关系?解 跟踪演练2 函数f(x)=lgx,g(x)=0.3x-1的图象如图.(1)指出C1,C2分别对应图中哪一个函数;(2)比较两函数的增长差异(以两图象交点为分界点,对f(x),g(x)的大小进行比较).解 (1.当x越来越大时,下列函数中,增长速度最快的应该是( )A.y=100xB.y=log100xC.y
5、=x100D.y=100x2.当2<x<4时,2x,x2,log2x的大小关系是( )A.2x>x2>log2xB.x2>2x>log2xC.2x>log2x>x2D.x2>log2x>2x3.某林区的森林蓄积量每年比上一年平均增长10.4%,要增长到原来的x倍,需经过y年,则函数y=f(x)的图象大致是( )4.某种动物繁殖数量y(只)与时间x(年)的关系为y=alog2(x+1),设这种动物第一年有100只,到第7年它们发展到( )A.300只B.400只C.500只D.600只5.某种产品每件80元,每天可售出30件,如果每件定价120元,则每天可售出20件,如果售出件数是
6、定价的一次函数,则这个函数解析式为________.三种函数模型的选取(1)当增长速度变化很快时,常常选用指数函数模型.(2)当要求不断增长,但又不会增长过快,也不会增长到很大时,常常选用对数函数模型.(3)幂函数模型y=xn(n>0),则可以描述增长幅度不同的变化:n值较小(n≤1)时,增长较慢;n值较大(n>1)时,增长较快.一、基础达标1.下列函数中,增长速度最慢的是( )2.甲从A地到B地,途中前一半路程的行驶速度是v1,后一半路程的行驶速度是v2(v1<v2),则甲从A地到B地走过的路程s与时间t的关系图示为( )3.据报道,某淡水湖的湖水在50年内减少了10%,若按此规
7、律,设2013年的湖水量为m,从2013年起,经过x年后湖水量y与x的函数关系为( )A.y=0.9B.y=(1-0.1)mC.y=0.9mD.y=(1-0.150x)m4.某地区植被被破坏,土地沙化越来越严重,最近三年测得沙漠增加值分别为0.2万公顷、0.4万公顷和0.76万公顷,则沙漠增加数y(万公顷)关于年数x(年)的函数关系较为近似的是( )A.y=0.2xB.y=(x2+2x)C.y=D.y=0.2+log16x5.已知某工厂生产
此文档下载收益归作者所有