欢迎来到天天文库
浏览记录
ID:29296125
大小:759.50 KB
页数:10页
时间:2018-12-18
《高一数学 3.4《函数的奇偶性与周期性》学案 沪教版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、函数的奇偶性与周期性高考要求:了解函数奇偶性的概念,掌握判断一些简单函数的奇偶性的方法掌握函数的奇偶性的定义及图象特征,并能判断和证明函数的奇偶性,能利用函数的奇偶性解决问题知识点归纳:1函数的奇偶性的定义;2奇偶函数的性质:(1)定义域关于原点对称;(2)偶函数的图象关于轴对称,奇函数的图象关于原点对称;3为偶函数4若奇函数的定义域包含,则5判断函数的奇偶性,首先要研究函数的定义域,有时还要对函数式化简整理,但必须注意使定义域不受影响;6牢记奇偶函数的图象特征,有助于判断函数的奇偶性;7判断函数的奇偶性有时可以用定义的等价形式:,8设,的定义域分别是,那么在它
2、们的公共定义域上:奇+奇=奇,奇奇=偶,偶+偶=偶,偶偶=偶,奇偶=奇1判断函数的奇偶性,必须按照函数的奇偶性定义进行,为了便于判断,常应用定义的等价形式:f(-x)=±f(x)óf(-x)f(x)=0;2讨论函数的奇偶性的前提条件是函数的定义域关于原点对称,要重视这一点;3若奇函数的定义域包含0,则f(0)=0,因此,“f(x)为奇函数”是"f(0)=0"的非充分非必要条件;4奇函数的图象关于原点对称,偶函数的图象关于y轴对称,因此根据图象的对称性可以判断函数的奇偶性5若存在常数T,使得f(x+T)=f(x)对f(x)定义域内任意x恒成立,则称T为函数f(x)
3、的周期,一般所说的周期是指函数的最小正周期周期函数的定义域一定是无限集对函数奇偶性定义的理解,不能只停留在f(-x)=f(x)和f(-x)=-f(x)这两个等式上,要明确对定义域内任意一个x,都有f(-x)=f(x),f(-x)=-f(x)的实质是:函数的定义域关于原点对称这是函数具备奇偶性的必要条件稍加推广,可得函数f(x)的图象关于直线x=a对称的充要条件是对定义域内的任意x,都有f(x+a)=f(a-x)成立函数的奇偶性是其相应图象的特殊的对称性的反映这部分的难点是函数的单调性和奇偶性的综合运用根据已知条件,调动相关知识,选择恰当的方法解决问题,是对学生能
4、力的较高要求(5)函数的周期性定义:若T为非零常数,对于定义域内的任一x,使恒成立则f(x)叫做周期函数,T叫做这个函数的一个周期例:(1)若函数在R上是奇函数,且在上是增函数,且则①关于对称;②的周期为;③在(1,2)是函数(增、减);④=,则(2)设是定义在上,以2为周期的周期函数,且为偶函数,在区间[2,3]上,=,则=题型讲解:1对函数单调性和奇偶性定义的理解例4下面四个结论:①偶函数的图象一定与y轴相交;②奇函数的图象一定通过原点;③偶函数的图象关于y轴对称;④既是奇函数又是偶函数的函数一定是f(x)=0(x∈R),其中正确命题的个数是 ( )A
5、1 B2C3 D4分析:偶函数的图象关于y轴对称,但不一定相交,因此③正确,①错误奇函数的图象关于原点对称,但不一定经过原点,因此②不正确若y=f(x)既是奇函数,又是偶函数,由定义可得f(x)=0,但不一定x∈R,如例1中的(3),故④错误,选A说明:既奇又偶函数的充要条件是定义域关于原点对称且函数值恒为零2复合函数的性质复合函数y=f[g(x)]是由函数u=g(x)和y=f(u)构成的,因变量y通过中间变量u与自变量x建立起函数关系,函数u=g(x)的值域是y=f(u)定义域的子集复合函数的性质由构成它的函数性质所决定,具备如下规律:(1
6、)单调性规律如果函数u=g(x)在区间[m,n]上是单调函数,且函数y=f(u)在区间[g(m),g(n)](或[g(n),g(m)])上也是单调函数,那么若u=g(x),y=f(u)增减性相同,则复合函数y=f[g(x)]为增函数;若u=g(x),y=f(u)增减性不同,则y=f[g(x)]为减函数(2)奇偶性规律若函数g(x),f(x),f[g(x)]的定义域都是关于原点对称的,则u=g(x),y=f(u)都是奇函数时,y=f[g(x)]是奇函数;u=g(x),y=f(u)都是偶函数,或者一奇一偶时,y=f[g(x)]是偶函数例6甲、乙两地相距Skm,汽车从
7、甲地匀速行驶到乙地,速度不得超过ckm/h,已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度v(km/h)的平方成正比,比例系数为b;固定部分为a元(1)把全程运输成本y(元)表示为速度v(km/h)的函数,并指出这个函数的定义域;(2)为了使全程运输成本最小,汽车应以多大速度行驶分析:(1)难度不大,抓住关系式:全程运输成本=单位时间运输成本×全程运输时间,而全程运输时间=(全程距离)÷(平均速度)就可以解决故所求函数及其定义域为但由于题设条件限制汽车行驶速度不超过ckm/h,所以(2)的解决需要论函数的增减性来解决由于vv>0,
8、v-v>0,并且又S>0
此文档下载收益归作者所有