欢迎来到天天文库
浏览记录
ID:29145470
大小:123.50 KB
页数:3页
时间:2018-12-17
《高中数学 3.3.2简单的线性规划问题导学案(2) 新人教a版必修5》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、3.3.2简单的线性规划问题(2)学生明确内容学习目标1.从实际情境中抽象出一些简单的二元线性规划问题,并加以解决;2.体会线性规划的基本思想,借助几何直观解决一些简单的线性规划问题.重点难点教学重点:利用图解法求得线性规划问题的最优解教学难点:把实际问题转化成线性规划问题,并给出解答,解决难点的关键是根据实际问题中的已知条件,找出约束条件和目标函数,利用图解法求得最优解易混淆知识点实际问题中最优整数解的问题教师编制内容生成问题预习提纲课前预习:1、已知变量满足约束条件,设,取点(3,2)可求得,取点(5,2)可求得,取点
2、(1,1)可求得取点(0,0)可求得,点(3,2)叫做_________、点(0,0)叫做_____________,点(5,2)和点(1,1)__________________。2、求最优解的一般步骤由那些?3、课本第91页的“阅读与思考”——错在哪里?教师精选编制内容针对目标训练(用时10-20分钟)1.在中,三顶点分别为A(2,4),B(1,2),C(1,0),点在内部及其边界上运动,则x-y的取值范围为.2.变量满足约束条件则使得的值的最小的是().A.(4,5)B.(3,6)C.(9,2)D.(6,4)3.已知
3、实数满足约束条件则目标函数的最大值为______________4.设变量满足约束条件则目标函数的最小值为______________5.若不等式组表示的平面区域是一个三角形,则的取值范围是().A.B.C.D.或小结:课本习题中出现的都是“截距型”目标函数(不同时为零),即线性目标函数,高考中除了出现“截距型”目标函数的情况外,还有非线性目标函数:(1)“斜率型”目标函数(为常数).最优解为点()与可行域上的点的斜率的最值;(2)“两点间距离型”目标函数(为常数).最优解为点()与可行域上的点之间的距离的平方的最值;(3
4、)“点到直线距离型”目标函数(为常数,且不同时为零).最优解为可行域上的点到直线的距离的最值.师生共同完成内容1、问题梳理2、归纳小结例1要将两种大小不同的钢板截成A、B、C三种规格,每张钢板可同时截得三种规格的小钢板的块数如下表所示:规格类型钢板类型A规格B规格C规格第一种钢板211第二种钢板123今需要三种规格的成品分别为12块、15块、27块,各截这两种钢板多少张可得所需A、B、C、三种规格成品,且使所用钢板张数最少?例2一个化肥厂生产甲乙两种混合肥料,生产1车皮甲肥料的主要原料是磷酸盐4t,硝酸盐18t;生产1车皮
5、乙种肥料的主要原料是磷酸盐1t,硝酸盐15t.现库存磷酸盐10t,硝酸盐66t,在此基础上生产这两种混合肥料.若生1车皮甲种肥料能产生的利润为10000元;生产1车皮乙种肥料,产生的利润为5000元.那么分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?例3(1)若实数,满足,求4+2的取值范围.(2)已知,求的取值范围.(3)已知的取值范围.小结:1、线性目标函数的最大值、最小值一般在可行域的顶点处取得.2、线性目标函数的最大值、最小值也可能在可行域的边界上取得,即满足条件的最优解有无数多个.学生自主完成听课所得
此文档下载收益归作者所有