概率论与数理统计各章重点与公式.doc

概率论与数理统计各章重点与公式.doc

ID:29082548

大小:107.00 KB

页数:16页

时间:2018-12-16

概率论与数理统计各章重点与公式.doc_第1页
概率论与数理统计各章重点与公式.doc_第2页
概率论与数理统计各章重点与公式.doc_第3页
概率论与数理统计各章重点与公式.doc_第4页
概率论与数理统计各章重点与公式.doc_第5页
资源描述:

《概率论与数理统计各章重点与公式.doc》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、第一章  随机事件和概率 (1)排列组合公式   从m个人中挑出n个人进行排列的可能数。  从m个人中挑出n个人进行组合的可能数。(2)加法和乘法原理加法原理(两种方法均能完成此事):m+n某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n种方法来完成,则这件事可由m+n 种方法来完成。乘法原理(两个步骤分别不能完成这件事):m×n某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成。(3)一些常见排列重复排列和非重复排列

2、(有序)对立事件(至少有一个)顺序问题(4)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。试验的可能结果称为随机事件。(5)基本事件、样本空间和事件在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质:①每进行一次试验,必须发生且只能发生这一组中的一个事件;②任何事件,都是由这一组中的部分事件组成的。这样一组事件中的每一个事件称为基本事件,用 来表示。基本事件的全体,称为

3、试验的样本空间,用 表示。一个事件就是由 中的部分点(基本事件 )组成的集合。通常用大写字母A,B,C,…表示事件,它们是 的子集。为必然事件,Ø为不可能事件。不可能事件(Ø)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。(6)事件的关系与运算①关系:如果事件A的组成部分也是事件B的组成部分,(A发生必有事件B发生):如果同时有 , ,则称事件A与事件B等价,或称A等于B:A=B。A、B中至少有一个发生的事件:A B,或者A+B。属于

4、A而不属于B的部分所构成的事件,称为A与B的差,记为A-B,也可表示为A-AB或者 ,它表示A发生而B不发生的事件。A、B同时发生:A B,或者AB。A B=Ø,则表示A与B不可能同时发生,称事件A与事件B互不相容或者互斥。基本事件是互不相容的。-A称为事件A的逆事件,或称A的对立事件,记为 。它表示A不发生的事件。互斥未必对立。②运算: 结合率:A(BC)=(AB)C  A∪(B∪C)=(A∪B)∪C 分配率:(AB)∪C=(A∪C)∩(B∪C)  (A∪B)∩C=(AC)∪(BC) 德摩根率:   

5、  ,(7)概率的公理化定义设 为样本空间, 为事件,对每一个事件 都有一个实数P(A),若满足下列三个条件:1° 0≤P(A)≤1,2° P(Ω) =13° 对于两两互不相容的事件 , ,…有 常称为可列(完全)可加性。则称P(A)为事件 的概率。(8)古典概型1° ,2° 。设任一事件 ,它是由 组成的,则有P(A)=  = (9)几何概型若随机试验的结果为无限不可数并且每个结果出现的可能性均匀,同时样本空间中的每一个基本事件可以使用一个有界区域来描述,则称此随机试验为几何概型。对任一事件A,。其中

6、L为几何度量(长度、面积、体积)。(10)加法公式P(A+B)=P(A)+P(B)-P(AB)当P(AB)=0时,P(A+B)=P(A)+P(B)(11)减法公式P(A-B)=P(A)-P(AB)当B A时,P(A-B)=P(A)-P(B)当A=Ω时,P( )=1- P(B)(12)条件概率定义 设A、B是两个事件,且P(A)>0,则称 为事件A发生条件下,事件B发生的条件概率,记为 。条件概率是概率的一种,所有概率的性质都适合于条件概率。例如P(Ω/B)=1 P( /A)=1-P(B/A)(13)乘法

7、公式乘法公式:更一般地,对事件A1,A2,…An,若P(A1A2…An-1)>0,则有… …… … 。(14)独立性①两个事件的独立性设事件 、 满足 ,则称事件 、 是相互独立的。若事件 、 相互独立,且 ,则有 若事件 、 相互独立,则可得到 与 、 与 、 与 也都相互独立。必然事件 和不可能事件Ø与任何事件都相互独立。Ø与任何事件都互斥。②多个事件的独立性设ABC是三个事件,如果满足两两独立的条件,P(AB)=P(A)P(B);P(BC)=P(B)P(C);P(CA)=P(C)P(A)并且同时满

8、足P(ABC)=P(A)P(B)P(C)那么A、B、C相互独立。对于n个事件类似。(15)全概公式设事件 满足1° 两两互不相容, ,2° ,则有。(16)贝叶斯公式设事件 , ,…, 及 满足1° , ,…, 两两互不相容, >0, 1,2,…, ,2° , ,则,i=1,2,…n。此公式即为贝叶斯公式。,( , ,…, ),通常叫先验概率。 ,( , ,…, ),通常称为后验概率。贝叶斯公式反映了“因果”的概率规律,并作出了“由果朔因”

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。