量子力学的教案设计7

量子力学的教案设计7

ID:28742075

大小:1.36 MB

页数:27页

时间:2018-12-13

量子力学的教案设计7_第1页
量子力学的教案设计7_第2页
量子力学的教案设计7_第3页
量子力学的教案设计7_第4页
量子力学的教案设计7_第5页
资源描述:

《量子力学的教案设计7》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、实用标准文档第七章自旋在较强的磁场下(∽),我们发现一些类氢离子或碱金属原子有正常塞曼效应的现象,而轨道磁矩的存在,能很好的解释它但是,当这些原子或离子置入弱磁场(∽1T)的环境中,或光谱分辨率提高后,发现问题并不是那么简单,这就要求人们进一步探索。大量实验事实证明,认为电子仅用三个自由度来描述并不是完全的。我们将引入一个新的自由度—自旋,它是粒子固有的。当然,自旋是Dirac电子的相对论性理论的自然结果。现在我们从实验事实来引入。§7.1电子自旋存在的实验事实(1)Stern-Gerlach实验(1922年)当一狭窄的原子束通过非均匀磁场时,如果原子

2、无磁矩,它将不偏转;而当原子具有磁矩,那在磁场中的附加能量为如果经过的路径上,磁场在方向上有梯度,即不均匀,则受力从经典观点看取值(从),因此,不同原子(磁矩取向不同)受力不同,而取值—所以原子分裂成一个带。但Stern-Gerlach发现,当一束处于基态的银原子通过这样的场时,仅发现分裂成二束,即仅二条轨道(两个态)。而人们知道,银原子()基态,所以没有轨道磁矩,而分成二个状态(二个轨道),表明存在磁矩,而这磁矩在任何方向上的投影仅取二个值。这磁矩既然不是由于轨道运动产生的,因此,只能是电子本身的(核磁矩可忽),这磁矩称为内禀磁矩,与之相联系的角动量

3、称为电子自旋,它是电子的一个新物理量,也是一个新的动力学变量。(2)电子自旋存在的其他证据A.碱金属光谱的双线结构钠原子光谱中有一谱线,波长为5893Å,但精细测量发现,实际上,这是由两条谱线组成。ÅÅ这一事实,从电子仅具有三个自由度是无论如何不能解释的。B.反常塞曼效应(AnomalousZeemaneffect)精彩文案实用标准文档原子序数为奇数的原子,其多重态是偶数,在弱磁场中分裂的光谱线条数为偶(如钠和的两条光谱线,在弱磁场中分裂为条和条)。这种现象称为反常塞曼效应。不引入电子自旋也是不能解释的。C.在弱磁场中,能级分裂出的多重态的相邻能级间距

4、,并不一定为,而是。对于不同能级,可能不同,而不是简单为(称因子)。根据这一系列实验事实,G.Uhlenbeck)(乌伦贝克)和S.Goudsmit(古德斯密特)提出假设①电子具有自旋,并且有内禀磁矩,它们有关系②电子自旋在任何方向上的测量值仅取两个值,所以,以为单位,则(而)自旋的回磁比为现在很清楚,电子自旋的存在可由Dirac提出的电子相对论性理论自然得到。考虑到辐射修正§7.2自旋-微观客体的一个动力学变量既然电子有自旋,这表明描述电子运动的变量就不能仅取,还应有第四个变量,相应算符为。(1)电子的自旋算符和它的矩阵表示由于电子具有自旋,实验发现

5、,它也具有内禀磁矩所以,自旋这个动力学变量是具有角动量性质的量,当然它又不同于轨道角动量(仅取二个值,)。对于这样一个力学量,当然仍应用线性厄密算符来刻划它。于是我们假设:自旋算符有三个分量,并满足角动量所具有的对易关系。精彩文案实用标准文档A.对易关系B.由于它在任意方向上的分量测量仅取二个数值,,所以于是是一常数C.矩阵形式由于其分量仅取二个数值,也即本征值有二个,所以可用矩阵表示。1.若选作为力学量完全集,即取表象,那在自身表象中的表示自然为对角矩阵,而对角元就是它的本征值相应的本征矢其对应的表示为,2.在表象中的矩阵表示我们知道,这只要将作用于

6、的基矢并以基矢展开,从展开系数来获得由因此精彩文案实用标准文档由即同理可得得系数矩阵为转置得而系数矩阵为转置得对于在方向有精彩文案实用标准文档则本征矢③PauliOperator;为方便起见,引入泡利算符于是,在表象中有(或称Pauli表象),,称为泡利矩阵。的本征值为。,由此得于是有∴为使我们对表象变换及算符矩阵表示以及由矩阵表示求本征值,本征矢有进一步性认识,我们作一些例子。例1.求的本征值,本征矢因已知在表象中矩阵形式为矩阵形式的本征方程为要不同时为,系数行列式应为对于精彩文案实用标准文档,,例2.表象变换对于两表象变换,显然,列,实为表象基矢在

7、表象中的表示我们知在自身表象为,所以,它在表象中表示为当然由的变换矩阵(2)考虑自旋后,状态和力学量的描述A.自旋波函数(电子的自旋态)对于的本征方程为精彩文案实用标准文档由于的本征值仅取,在其自身表象而相应本征态的表示为(即:,,,),是的本征值为的本征态在表象中的表示是的本征值为的本征态在表象中的表示显然正交,对于任何一旋量在表象中,其表示为若是归一化的,则为以描述的电子处于的几率,即自旋向的几率。而和可由与标积获得精彩文案实用标准文档(即由表示计算振幅)B.考虑自旋后状态的描述:由于电子除了之外,还有第四个动学变量,它的特点仅取二个值,而,所以,

8、可在表象中表示体系波函数。仅有两个本征函数。因此,对于处于某状态的体系可按自旋波函数展开。这即

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。