3.1随机事件的概率(二)

3.1随机事件的概率(二)

ID:28678711

大小:237.00 KB

页数:3页

时间:2018-12-12

3.1随机事件的概率(二)_第1页
3.1随机事件的概率(二)_第2页
3.1随机事件的概率(二)_第3页
资源描述:

《3.1随机事件的概率(二)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、3.1随机事件的概率(二)问题提出1.概率的定义是什么?对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率fn(A)稳定在某个常数上,把这个常数记作P(A),称为事件A的概率,简称为A的概率.2.频率与概率有什么区别和联系?①频率是随机的,在实验之前不能确定;②概率是一个确定的数,与每次实验无关;③随着实验次数的增加,频率会越来越接近概率;④频率是概率的近似值,概率是用来度量事件发生可能性的大小.探究(一):概率的正确理解思考1:连续两次抛掷一枚硬币,可能会出现哪几种结果?“两次正面朝上”,“两次反面朝上”,“一次正面朝上,一次反面朝上”.思考2:

2、抛掷—枚质地均匀的硬币,出现正、反面的概率都是0.5,那么连续两次抛掷一枚硬币,一定是出现一次正面和一次反面吗?答:这种说法是错误的,抛掷一枚硬币出现正面的概率为0.5,它是大量试验得出的一种规律性结果,对具体的几次试验来讲不一定能体现出这种规律性,在连续抛掷一枚硬币两次的试验中,可能两次均正面向上,也可能两次均反面向上,也可能一次正面向上,一次反面向上.思考3:试验:全班同学各取一枚同样的硬币,连续抛掷两次,观察它落地后的朝向.将全班同学的试验结果汇总,计算三种结果发生的频率.你有什么发现?随着试验次数的增多,三种结果发生的频率会有什么变化规律?“两次正面朝

3、上”的频率约为0.25,“两次反面朝上”的频率约为0.25,“一次正面朝上,一次反面朝上”的频率约为0.5.思考4:若某种彩票准备发行1000万张,其中有1万张可以中奖,则买一张这种彩票的中奖概率是多少?买1000张的话是否一定会中奖?答:不一定中奖,因为买彩票是随机的,每张彩票都可能中奖也可能不中奖.买彩票中奖的概率为1/1000,是指试验次数相当大,即随着购买彩票的张数的增加,大约有1/1000的彩票中奖.思考5:围棋盒里放有同样大小的9枚白棋子和1枚黑棋子,每次从中随机摸出1枚棋子后再放回,一共摸10次,你认为一定有一次会摸到黑子吗?说明你的理由.不一定

4、.摸10次棋子相当于做10次重复试验,因为每次试验的结果都是随机的,所以摸10次棋子的结果也是随机的.可能有两次或两次以上摸到黑子,也可能没有一次摸到黑子,摸到黑子的概率为1-0.910≈0.6513.归纳:随机事件在一次实验中发生与否是随机的,但随机性中含有规律性:即随着实验次数的增加,该随机事件发生的频率会越来越接近于该事件发生的概率.探究(二):概率思想的实际应用思考1:在一场乒乓球比赛前,必须要决定由谁先发球,并保证具有公平性,你知道裁判员常用什么方法确定发球权吗?其公平性是如何体现出来的?思考2:某中学高一年级有12个班,要从中选2个班代表学校参加某

5、项活动,由于某种原因,1班必须参加,另外再从2至12班中选一个班,有人提议用如下方法:掷两个骰子得到的点数和是几,就选几班,你认为这种方法公平吗?不公平,因为各班被选中的概率不全相等,七班被选中的概率最大.思考3:如果连续10次掷一枚骰子,结果都是出现1点,你认为这枚骰子的质地是均匀的,还是不均匀的?如何解释这种现象?这枚骰子的质地不均匀,标有6点的那面比较重,会使出现1点的概率最大,更有可能连续10次都出现1点.如果这枚骰子的质地均匀,那么抛掷一次出现1点的概率为,连续10次都出现1点的概率为这是一个小概率事件,几乎不可能发生.如果我们面临的是从多个可选答案

6、中挑选正确答案的决策任务,那么“使得样本出现的可能性最大”可以作为决策的准则,这种判断问题的方法称为极大似然法.如果我们的判断结论能够使得样本出现的可能性最大,那么判断正确的可能性也最大,这种判断问题的方法在统计学中被称为似然法.思考4:某地气象局预报说,明天本地降水概率为70%,能否认为明天本地有70%的区域下雨,30%的区域不下雨?你认为应如何理解?降水概率≠降水区域;明天本地下雨的可能性为70%.思考5:天气预报说昨天的降水概率为90%,结果昨天根本没下雨,能否认为这次天气预报不准确?如何根据频率与概率的关系判断这个天气预报是否正确?不能,概率为90%的

7、事件发生的可能性很大,但“明天下雨”是随即事件,也有可能不发生.收集近50年同日的天气情况,考察这一天下雨的频率是否为90%左右.思考6:奥地利遗传学家孟德尔从1856年开始用豌豆作试验,他把黄色和绿色的豌豆杂交,第一年收获的豌豆都是黄色的.第二年,他把第一年收获的黄色豌豆再种下,收获的豌豆既有黄色的又有绿色的.同样他把圆形和皱皮豌豆杂交,第一年收获的豌豆都是圆形的.第二年,他把第一年收获的圆形豌豆再种下,收获的豌豆却既有圆形豌豆,又有皱皮豌豆.类似地,他把长茎的豌豆与短茎的豌豆杂交,第一年长出来的都是长茎的豌豆.第二年,他把这种杂交长茎豌豆再种下,得到的却既

8、有长茎豌豆,又有短茎豌豆.试验的具体数

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。