欢迎来到天天文库
浏览记录
ID:27659316
大小:2.19 MB
页数:65页
时间:2018-12-05
《回归分析预测方法》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、lectureFORECASTINGMETHODSFORMANAGEMENT管理预测方法主讲:上海财经大学邵建利博士lecture回归分析预测法3REGRESSIONANALYSISPREDICTIONMETHOD1.回归分析的提出回归分析起源于生物学研究,是由英国生物学家兼统计学家高尔登(FrancisGalton1822-1911)在19世纪末叶研究遗传学特性时首先提出来的。高尔登在1889年发表的著作《自然的遗传》中,提出了回归分析方法以后,很快就应用到经济领域中来,而且这一名词也一直为生物学和统计学所沿用。回归的现代涵义与过去大不相同。一般说
2、来,回归是研究因变量随自变量变化的关系形式的分析方法。其目的在于根据已知自变量来估计和预测因变量的总平均值。(FrancisGalton1822-1911)3.1引言2.回归分析和相关分析(1)函数关系函数关系反映客观事物之间存在着严格的依存关系。在这种关系中,当一个或几个变量取值一定时,另一个变量有确定的值与之相对应,并且这种关系可以用一个确定的数学表达式反映出来。一般把作为影响因素的变量称为自变量,把发生对应变化的变量称为因变量。(2)相关关系相关关系反映的是客观事物之间的非严格、不确定的线性依存关系。这种线性依存关系有两个显著的特点:①客观事物
3、之间在数量上确实存在一定的内在联系。表现在一个变量发生数量上的变化,要影响另一个变量也相应地发生数量上的变化。②客观事物之间的数量依存关系不是确定的,具有一定的随机性。表现在当一个或几个相互联系的变量取一定数值时,与之对应的另一个变量可以取若干个不同的数值。这种关系虽然不确定,但因变量总是遵循一定规律围绕这些数值的平均数上下波动。3.1引言(3)回归分析与相关分析的关系相关分析是以相关关系为对象,研究两个或两个以上随机变量之间线性依存关系的紧密程度。通常用相关系数表示,多元相关时用复相关系数表示。回归分析是对具有相关关系的变量之间的数量变化规律进行测
4、定,研究某一随机变量(因变量)与其他一个或几个普通变量(自变量)之间的数量变动关系,并据此对因变量进行估计和预测的分析方法。由回归分析求出的关系式,称为回归模型回归分析与相关分析的联系是,它们是研究客观事物之间相互依存关系的两个不可分割的方面。在实际工作中,一般先进行相关分析,由相关系数的大小决定是否需要进行回归分析。在相关分析的基础上建立回归模型,以便进行推算、预测,同时相关系数还是检验回归分析效果的标准。相关分析需要回归分析来表明客观事物数量关系的具体形式,而回归分析则应建立在相关分析的基础上。3.1引言3.回归模型的种类根据自变量的多少,回归模
5、型可以分为一元回归模型和多元回归模型。根据回归模型的形式线性与否,回归模型可以分为线性回归模型和非线性回归模型。根据回归模型所含的变量是否有虚拟变量,回归模型可以分为普通回归模型和带虚拟变量的回归模型。此外,根据回归模型是否用滞后的因变量作自变量,回归模型又可分为无自回归现象的回归模型和自回归模型。3.1引言3.2一元线性回归预测法3.2一元线性回归预测法2.OLS(OrdinaryLeastSquare)估计2.OLS(OrdinaryLeastSquare)估计2.OLS的特性最小二乘估计量具有线性、无偏性和最小方差性等良好的性质。线性、无偏性和
6、最小方差性统称BLUE性质。满足BLUE性质的估计量称为BLUE估计量。2.OLS(OrdinaryLeastSquare)估计3.2一元线性回归预测法3.回归方程的检验在一元线性回归模型中最常用的显著性检验方法有:相关系数检验法F检验法t检验法3.3.1离差平方和的分解与可决系数在一元线性回归模型中,观测值的数值会发生波动,这种波动称为变差。变差产生的原因如下:①受自变量变动的影响,即x取值不同时的影响;②受其他因素(包括观测和实验中产生的误差)的影响。为了分析这两方面的影响,需要对总变差进行分解。3.3回归方程的检验3.3回归方程的检验(1)离差
7、平方和的分解3.3回归方程的检验3.3回归方程的检验3.3回归方程的检验3.3回归方程的检验3.3回归方程的检验3.3.5预测区间点估计在一元线性回归模型中,对于自变量x的一个给定值,代入回归模型,就可以求得一个对应的回归预测值,又称为点估计值。区间估计所谓预测区间就是指在一定的显著性水平上,依据数理统计方法计算出的包含预测对象未来真实值的某一区间范围。3.3回归方程的检验3.3.5预测区间3.3.5预测区间3.3.5预测区间3.3.5几个应当注意的问题1.重视数据的收集和甄别在收集数据的过程中可能会遇到以下困难:(1)一些变量无法直接观测。(2)数
8、据缺失或出现异常数据。(3)数据量不够。(4)数据不准确、不一致、有矛盾。2.合理确定数据的单位在建立回归方
此文档下载收益归作者所有