欢迎来到天天文库
浏览记录
ID:27296943
大小:16.96 KB
页数:6页
时间:2018-12-02
《xx高一数学必修1第二章知识点总结》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、学生会成立以来,学生会搞了一系列的活动,而且都取得了较好的成绩。通过各部的相互努力,我们获得了不少经验。XX高一数学必修1第二章知识点总结本资料为woRD文档,请点击下载地址下载全文下载地址 www.5y kj.co m 第二章基本初等函数 一、指数函数 (一)指数与指数幂的运算 .根式的概念:一般地,如果,那么叫做的次方根,其中>1,且∈*. u 负数没有偶次方根;0的任何次方根都是0,记作。 当是奇数时,,当是偶数时, 2.分数指数幂 正数的分数指数幂的意义,规定: , u 0的正分数指数幂等于0,0的负分数指数幂没
2、有意义 3.实数指数幂的运算性质 (1)· ; (2)团结创新,尽现丰富多彩的课余生活1。庆祝##系成立之时,我们学生会举办了一次“邀明月,共成长,师生同欢”茶话会。职教系部分老师和我系全体教师以及各班班委参加了此茶话会。学生会成立以来,学生会搞了一系列的活动,而且都取得了较好的成绩。通过各部的相互努力,我们获得了不少经验。 ; (3) . (二)指数函数及其性质 、指数函数的概念:一般地,函数叫做指数函数,其中x是自变量,函数的定义域为R. 注意:指数函数的底数的取值范围,底数不能是负数、零和1. 2、指数函数的图象
3、和性质 a>1 0 定义域R 定义域R 值域y>0 值域y>0 在R上单调递增 在R上单调递减 非奇非偶函数 非奇非偶函数团结创新,尽现丰富多彩的课余生活1。庆祝##系成立之时,我们学生会举办了一次“邀明月,共成长,师生同欢”茶话会。职教系部分老师和我系全体教师以及各班班委参加了此茶话会。学生会成立以来,学生会搞了一系列的活动,而且都取得了较好的成绩。通过各部的相互努力,我们获得了不少经验。 函数图象都过定点(0,1) 函数图象都过定点(0,1) 注意:利用函数的单调性,结合图象还可以看出: (1)在[a,b]上,值域是或
4、; (2)若,则;取遍所有正数当且仅当; (3)对于指数函数,总有; 二、对数函数 (一)对数 .对数的概念:一般地,如果,那么数叫做以为底的对数,记作:(—底数,—真数,—对数式) 说明:1注意底数的限制,且; 2; 3注意对数的书写格式. 两个重要对数: 常用对数:以10为底的对数; 2自然对数:以无理数为底的对数的对数. u 指数式与对数式的互化 幂值 真数 =N=b 团结创新,尽现丰富多彩的课余生活1。庆祝##系成立之时,我们学生会举办了一次“邀明月,共成长,师生同欢”茶话会。职教系部分老师和我系全体教师以及各班班
5、委参加了此茶话会。学生会成立以来,学生会搞了一系列的活动,而且都取得了较好的成绩。通过各部的相互努力,我们获得了不少经验。 底数 指数 对数 (二)对数的运算性质 如果,且,,,那么: ·+; 2-; 3 . 注意:换底公式 (,且;,且;). 利用换底公式推导下面的结论 (1);(2). (二)对数函数 、对数函数的概念:函数,且叫做对数函数,其中是自变量,函数的定义域是(0,+∞). 注意:1对数函数的定义与指数函数类似,都是形式定义,注意辨别。如:, 都不是对数函数,而只能称其为对数型函数. 2对数函数对底数的
6、限制:,且. 2、对数函数的性质:团结创新,尽现丰富多彩的课余生活1。庆祝##系成立之时,我们学生会举办了一次“邀明月,共成长,师生同欢”茶话会。职教系部分老师和我系全体教师以及各班班委参加了此茶话会。学生会成立以来,学生会搞了一系列的活动,而且都取得了较好的成绩。通过各部的相互努力,我们获得了不少经验。 a>1 0 定义域x>0 定义域x>0 值域为R 值域为R 在R上递增 在R上递减 函数图象都过定点(1,0) 函数图象都过定点(1,0) (三)幂函数 、幂函数定义:一般地,形如的函数称为幂函数,其中为常数. 2、幂函
7、数性质归纳. (1)所有的幂函数在(0,+∞)都有定义并且图象都过点(1,1); (2)时,幂函数的图象通过原点,并且在区间上是增函数.特别地,当时,幂函数的图象下凸;当时,幂函数的图象上凸; (3)时,幂函数的图象在区间上是减函数.在第一象限内,当从右边趋向原点时,图象在轴右方无限地逼近轴正半轴,当趋于时,图象在轴上方无限地逼近轴正半轴.团结创新,尽现丰富多彩的课余生活1。庆祝##系成立之时,我们学生会举办了一次“邀明月,共成长,师生同欢”茶话会。职教系部分老师和我系全体教师以及各班班委参加了此茶话会。学生会成立以来,学生会搞了一系列的活动,而且都
8、取得了较好的成绩。通过各部的相互努力,我们获得了不少经验。 例题
此文档下载收益归作者所有