欢迎来到天天文库
浏览记录
ID:47506905
大小:717.50 KB
页数:7页
时间:2020-01-12
《高一数学必修1知识点总结》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、.高中数学必修1知识点第一章、集合综合应用题;单调性、奇偶性证明与应用;第二章、指数幂与对数的运算;指数函数与对数函数性质的应用;第三章、零点问题,尤其是二次函数的零点、二次函数根的分布。第一章集合与函数概念一、集合有关概念:1、集合的含义:2、集合的中元素的三个特性:(1)元素的确定性;(2)元素的互异性;(3)元素的无序性3、集合的表示:(Ⅰ)列举法:(Ⅱ)描述法:4、常用数集及其记法:非负整数集(即自然数集)N;正整数集N*或N+;整数集Z;有理数集Q;实数集R5、“属于”的概念集合的元素通常用小写的拉丁字母表示,
2、如:a是集合A的元素,就说a属于集合A记作a∈A,相反,a不属于集合A记作aA6、集合的分类:1.有限集含有有限个元素的集合2.无限集含有无限个元素的集合3.空集不含任何元素的集合二、集合间的基本关系集合相等,子集,真子集,空集等定义规定:空集是任何集合的子集,空集是任何非空集合的真子集。三、集合的运算1.交集、并集、全集与补集的定义2.性质:A∩A=A,A∩φ=φ,A∩B=B∩A,A∪A=A,A∪φ=A,A∪B=B∪A.⑴CU(CUA)=A⑵(CUA)∩A=Φ⑶(CUA)∪A=U(4)(CUA)∩(CUB)=CU(A∪
3、B)(5)(CUA)∪(CUB)=CU(A∩B)二、函数的有关概念1.函数的概念:(看课本)注意:1、如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;2、函数的定义域、值域要写成集合或区间的形式.定义域补充:能使函数式有意义的实数x的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1.优质范文.(5)如果函数是由一些基本函数
4、通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零(7)实际问题中的函数的定义域还要保证实际问题有意义.(注意:求出不等式组的解集即为函数的定义域。)2、构成函数的三要素:定义域、对应关系和值域相同函数的判断方法:①定义域一致;②表达式相同(两点必须同时具备)函数图像A、描点法:根据函数解析式和定义域,求出x,y的一些对应值并列表,以(x,y)为坐标在坐标系内描出相应的点P(x,y),最后用平滑的曲线将这些点连接起来.B、图象变换法:常用变换方法有三种,即平移变换、
5、对称变换和伸缩变换Ⅰ、对称变换:(1)将y=f(x)在x轴下方的图象向上翻得到y=∣f(x)∣的图象如:书上P21例5(2)y=f(x)和y=f(-x)的图象关于y轴对称。如(3)y=f(x)和y=-f(x)的图象关于x轴对称。如Ⅱ、平移变换:由f(x)得到f(xa)左加右减;由f(x)得到f(x)a上加下减(3)作用:A、直观的看出函数的性质;B、利用数形结合的方法分析解题的思路;C、提高解题的速度;发现解题中的错误。4.区间的概念与表示5.映射定义:(看课本)说明:函数是一种特殊的映射,映射是一种特殊的对应,①集合A
6、、B及对应法则f是确定的;②对应法则有“方向性”,即强调从集合A到集合B的对应,它与从B到A的对应关系一般是不同的;③对于映射f:A→B来说,则应满足:(Ⅰ)集合A中的每一个元素,在集合B中都有象,并且象是唯一的;(Ⅱ)集合A中不同的元素,在集合B中对应的象可以是同一个;(Ⅲ)不要求集合B中的每一个元素在集合A中都有原象。6、函数的表示法:解析法;图象法;列表法注意:解析法:便于算出函数值。列表法:便于查出函数值。图象法:便于量出函数值u=g(x)y=f(u)y=f[g(x)]增增增增减减减增减减减增*分段函数是一个函数
7、,不要把它误认为是几个函数;(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集.*如果y=f(u),(u∈M),u=g(x),(x∈A),则y=f[g(x)]=F(x),(x∈A)称为f是g的复合函数。7.函数单调性(定义)(1).增函数注意:1、函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质;2、必须是对于区间D内的任意两个自变量x1,x2;当x18、x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.(3).函数单调区间与单调性的判定方法(A)定义法:1任取x1,x2∈D,且x1
8、x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.(3).函数单调区间与单调性的判定方法(A)定义法:1任取x1,x2∈D,且x1
此文档下载收益归作者所有