几何概型--经典

几何概型--经典

ID:25871035

大小:396.76 KB

页数:7页

时间:2018-11-23

几何概型--经典_第1页
几何概型--经典_第2页
几何概型--经典_第3页
几何概型--经典_第4页
几何概型--经典_第5页
资源描述:

《几何概型--经典》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、几何概型[考纲传真] 1.了解随机数的意义,能运用模拟方法估计概率.2.了解几何概型的意义.1.几何概型的定义如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型.2.几何概型的两个基本特点(1)无限性:在一次试验中可能出现的结果有无限多个.(2)等可能性:每个试验结果的发生具有等可能性.3.几何概型的概率公式P(A)=.1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)随机模拟方法是以事件发生的频率估计概率.

2、(  )(2)从区间[1,10]内任取一个数,取到1的概率是.(  )(3)概率为0的事件一定是不可能事件.(  )(4)在几何概型定义中的区域可以是线段、平面图形、立体图形.(  )2.(教材改编)有四个游戏盘,将它们水平放稳后,在上面扔一颗玻璃小球,若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘是(  )3.(2016·全国卷Ⅱ)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为(  )A.

3、  B. C.  D.4.(2017·唐山检测)如图1061所示,在边长为1的正方形中随机撒1000粒豆子,有180粒落到阴影部分,据此估计阴影部分的面积为________.图10615.设不等式组表示的平面区域为D,在区域D内随机取一个点,则此点到坐标原点的距离大于2的概率是________.与长度(角度)有关的几何概型 (1)(2016·全国卷Ⅰ)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分

4、钟的概率是(  )A.         B.C.D.(2)如图1062所示,四边形ABCD为矩形,AB=,BC=1,在∠DAB内作射线AP,则射线AP与线段BC有公共点的概率为________.图1062(3)我校早上7:40开始上课,假设我校学生小张与小王在早上7:10~7:30之间到校,且每人在该时间段的任何时刻到校是等可能的,则小张比小王至少早5分钟到校的概率为_____________。[规律方法] 1.解答几何概型问题的关键在于弄清题中的考查对象和对象的活动范围,当考查对象为点,且点的活

5、动范围在线段上时,用“线段长度”为测度计算概率,求解的核心是确定点的边界位置.2.(1)第(2)题易出现“以线段BD为测度”计算几何概型的概率,导致错求P=.(2)当涉及射线的转动,扇形中有关落点区域问题时,应以角对应的弧长的大小作为区域度量来计算概率.事实上,当半径一定时,曲线弧长之比等于其所对应的圆心角的弧度数之比.[变式训练1] (1)(2017·唐山质检)设A为圆周上一点,在圆周上等可能地任取一点与A连接,则弦长超过半径倍的概率是(  )A.B.C.D.(2)(2016·山东高考)在[-1

6、,1]上随机地取一个数k,则事件“直线y=kx与圆(x-5)2+y2=9相交”发生的概率为________.(3)在区间[0,5]上随机地选择一个数p,则方程x2+2px+3p-2=0有两个负根的概率为________.(4)在区间[0,1]上任取两个数,则这两个数之和小于的概率是(  )A.B.C.D.(5)某人欲从某车站乘车出差,已知该站发往各站的客车均每小时一班,则此人等车时间不多于10分钟的概率为___________.(6)甲、乙两人相约在7点到8点间在某地会面.先到者要等候另一人20分

7、钟,若另一人20分钟后仍不到即离去.如果每个人在一小时内的任何时刻到达的可能性是相同的,求两人能够会面的概率.(7)节日前夕,小李在家门前的树上挂了两串彩灯.这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒内任一时刻等可能发生,然后每串彩灯以4秒为间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是(  )A.B.C.D.与面积有关的几何概型☞角度1 与随机模拟相关的几何概型 (2016·全国卷Ⅱ)从区间[0,1]随机抽取2n个数x1,x2,…,xn,y1,y2,…,y

8、n,构成n个数对(x1,y1),(x2,y2),…,(xn,yn),其中两数的平方和小于1的数对共有m个,则用随机模拟的方法得到的圆周率π的近似值为(  )A.B.C.D.☞角度2 与线性规划交汇问题 由不等式组确定的平面区域记为Ω1,不等式组确定的平面区域记为Ω2,在Ω1中随机取一点,则该点恰好在Ω2内的概率为(  )A.B.C.D.与体积有关的几何概型 在棱长为2的正方体ABCDA1B1C1D1中,点O为底面ABCD的中心,在正方体ABCDA1B1C1D1内随机取一点P,则点P

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。