资源描述:
《2019年高考数学(文)二轮复习对点练:专题七 解析几何 专题对点练24 Word版含答案》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、专题对点练24 圆锥曲线中的定点、定值与存在性问题1.已知动圆M恒过点(0,1),且与直线y=-1相切.(1)求圆心M的轨迹方程;(2)动直线l过点P(0,-2),且与点M的轨迹交于A,B两点,点C与点B关于y轴对称,求证:直线AC恒过定点.[来源:学.科.网]2.已知椭圆Γ:+y2=1(a>1)与圆E:x2+=4相交于A,B两点,且
2、AB
3、=2,圆E交y轴负半轴于点D.(1)求椭圆Γ的离心率;(2)过点D的直线交椭圆Γ于M,N两点,点N与点N'关于y轴对称,求证:直线MN'过定点,并求该定点坐标.[来源:学,科,网Z,X,X,
4、K]3.已知抛物线E:y2=4x的焦点为F,圆C:x2+y2-2ax+a2-4=0,直线l与抛物线E交于A,B两点,与圆C切于点P.(1)当切点P的坐标为时,求直线l及圆C的方程;(2)当a=2时,证明:
5、FA
6、+
7、FB
8、-
9、AB
10、是定值,并求出该定值.4.设点M是x轴上的一个定点,其横坐标为a(a∈R),已知当a=1时,动圆N过点M且与直线x=-1相切,记动圆N的圆心N的轨迹为C.(1)求曲线C的方程;(2)当a>2时,若直线l与曲线C相切于点P(x0,y0)(y0>0),且l与以定点M为圆心的动圆M也相切,当动圆M的面积最小
11、时,证明:M,P两点的横坐标之差为定值.5.已知椭圆M:=1(a>b>0)的焦距为2,离心率为.(1)求椭圆M的方程;(2)若圆N:x2+y2=r2上斜率为k的切线l与椭圆M相交于P,Q两点,OP与OQ能否垂直?若能垂直,请求出相应的r的值;若不能垂直,请说明理由.6.已知椭圆=1(a>b>0)的右焦点为F,右顶点为A,上顶点为B,已知
12、AB
13、=
14、OF
15、,且△AOB的面积为.(1)求椭圆的方程;(2)直线y=2上是否存在点Q,使得从该点向椭圆所引的两条切线相互垂直?若存在,求点Q的坐标;若不存在,说明理由.专题对点练24答案1.
16、(1)解∵动点M到直线y=-1的距离等于到定点C(0,1)的距离,∴动点M的轨迹为抛物线,且=1,解得p=2,∴动点M的轨迹方程为x2=4y.(2)证明由题意可知直线l的斜率存在,设直线l的方程为y=kx-2,A(x1,y1),B(x2,y2),则C(-x2,y2).联立化为x2-4kx+8=0,Δ=16k2-32>0,解得k>或k<-.∴x1+x2=4k,x1x2=8.直线AC的方程为y-y2=-(x+x2),又y1=kx1-2,y2=kx2-2,∴4k-4k(kx2-2)=(kx1-kx2)x+kx1x2-k,化为4y=(x
17、1-x2)x+x2(4k-x2),∵x1=4k-x2,∴4y=(x1-x2)x+8,令x=0,则y=2,∴直线AC恒过一定点(0,2).2.(1)解由题意得A,B两点关于y轴对称,设xB=,则圆心E到AB的距离为1,∴yB=,∴B,代入椭圆方程得=1,解得a2=4,∴e=.(2)证明设M(x1,y1),N(x2,y2),N'(-x2,y2).圆E交y轴负半轴于点D,当直线MN斜率存在时,设其方程为y=kx-消去y得(1+4k2)x2-4kx-3=0.∴x1+x2=,x1x2=,直线MN'的方程y-y1=(x-x1),依据椭圆的对
18、称性,若直线MN'过定点,定点一定在y轴上,令x=0,y=y1-=-2.当直线MN斜率不存在时,直线MN'的方程为x=0,显然过点(0,-2).综上,直线MN'过定点(0,-2).3.(1)解由圆(x-a)2+y2=4,则圆心(a,0),半径为2,将P代入圆方程,解得a=2或a=-,∴圆的方程为(x-2)2+y2=4或+y2=4,当a=2,圆心C(2,0),则直线CP的斜率k==-,由直线l的斜率为-,则直线l的方程y-,整理得4y-3x-4=0;当a=-,圆心C,则直线CP的斜率k=,由直线l的斜率为-=-,则直线l的方程y-
19、=-,整理得20y+15x-44=0,综上可知,直线l方程为4y-3x-4=0,圆C的方程为(x-2)2+y2=4,或直线l方程为20y+15x-44=0,圆C的方程为+y2=4;(2)证明当a=2时,圆C的方程(x-2)2+y2=4,当l垂直于x轴时,则x=4,A(4,4),B(4,-4),∴
20、FA
21、=
22、FB
23、=5,
24、AB
25、=8,[来源:Z_xx_k.Com]∴
26、FA
27、+
28、FB
29、-
30、AB
31、=2;当l不垂直于x轴时,设直线l:y=kx+b(k≠0),直线l与圆C相切,则=2,则4kb+b2=4,结合图象知kb
32、得k2x2+(2kb-4)x+b2=0,由Δ=(2kb-4)2-4k2b2=-16kb+4(4kb+b2)=4b2>0,x1+x2=-,x1x2=,
33、AB
34、=====,由抛物线的性质可知
35、FA
36、+
37、FB
38、=x1+x2+p=x1+x2+2,∴
39、FA
40、+
41、FB
42、=-