基于fpga的高斯白噪声发生器设计毕业设计毕业论文

基于fpga的高斯白噪声发生器设计毕业设计毕业论文

ID:23213200

大小:1.04 MB

页数:12页

时间:2018-11-05

基于fpga的高斯白噪声发生器设计毕业设计毕业论文_第1页
基于fpga的高斯白噪声发生器设计毕业设计毕业论文_第2页
基于fpga的高斯白噪声发生器设计毕业设计毕业论文_第3页
基于fpga的高斯白噪声发生器设计毕业设计毕业论文_第4页
基于fpga的高斯白噪声发生器设计毕业设计毕业论文_第5页
资源描述:

《基于fpga的高斯白噪声发生器设计毕业设计毕业论文》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、基于FPGA的高斯白噪声发生器设计本文设计的高斯白噪声发生器采用FPGA的方式实现,输出的基带白噪声带宽可调,范围为1~66MHz,步进3MHz,幅度8位可调,同时可产生正弦波、三角波、锯齿波、方波等函数波,通过更改现场可编程器件的配置波形数据也可产生其他复杂函数波形。0引言  现代通讯电子设备的抗干扰测试已经成为必须的测试项目,主要的干扰类型为噪声干扰。在通信信道测试和电子对抗领域里,噪声始终是最基本、最常用的干扰源之一。如何产生稳定和精确的噪声信号已经成为一个重要的研究领域。其中,带限白噪声信号时间相关性小,

2、目前应用最广泛。现有的硬件高斯白噪声发生器通常分为物理噪声发生器和数字噪声发生器两类,数字噪声发生器虽然没有物理噪声发生器的精度高,但是实现电路较为简单,易于应用。  FPGA技术的发展,提高了硬件噪声发生器的速度和性能,相比基于软件实现的噪声发生器,展现出更大的优势。本文设计的高斯白噪声发生器采用FPGA的方式实现,输出的基带白噪声带宽可调,范围为1~66MHz,步进3MHz,幅度8位可调,同时可产生正弦波、三角波、锯齿波、方波等函数波,通过更改现场可编程器件的配置波形数据也可产生其他复杂函数波形。  l高斯白

3、噪声发生器原理  本文所述的高斯白噪声发生器如图1所示。  查看原图(大图)  首先,在现场可编程门阵列(FieldProgrammableGateArray,FPGA)平台上以一个统一的时钟速度(以后称之为噪声发生速度,即f0)生成高速m序列伪随机码流,对该序列进行有限冲击响应(FiniteImpulseResponse,FIR)数字滤波处理,得到带限白噪声数字序列,同时在FPGA中实现直接数字综合(DirectDigitalSynthesizer,DDS)算法,产生正弦数字序列,并与噪声序列合成;其次,将以上

4、得到的数字序列通过高速数/模转换器(DigitalAnalogConverter,DAC)转换为模拟噪声信号;再次,通过LC低通滤波器以及放大器转换为模拟带限白噪声和正弦信号,该信号即为基带白噪声信号。下面对涉及的基本算法进行分析和仿真。高斯白噪声发生方法中涉及伪随机码发生算法、数字滤波算法和正弦波发生算法。本文详细论述这几种算法,及其在FPGA上的实现方法,分析了各种算法在频域上的频谱特性。  2高斯白噪声发生器算法分析  2.1伪随机码发生算法  伪随机码(Pseudo-randomSequence,PS)的

5、性能指标直接影响产生白噪声的随机性,是系统设汁的关键。通常产生伪随机码的电路为一反馈移存器,分为线性和非线性两类。前者产生周期最长的二进制数字序列为最大长度线性反馈移存器序列,简称m序列。本文采用的就是m序列伪随机码。  产生m序列的反馈移存器的递推方程可以写为:    查看原图(大图)  它给出了移位输入an与移位前各级状态的关系。  特征多项式写为:    查看原图(大图)  它决定了移位寄存器的反馈连接和序列的结构。  m序列的自相关函数可表示为:   查看原图(大图)  式(3)为一个周期(m=2n-1)

6、内的函数,其中Tn为伪随机噪声码元的宽度。整个时域的自相关函数的周期为m=2n-1。信号的自相关函数与功率谱密度构成一对傅里叶变换,因此m序列的自相关函数经过傅里叶变换,其功率谱密度为:    查看原图(大图)  假定零频处的功率为1,那么功率下降为0.5处的频率为:    查看原图(大图)  其典型的功率谱密度如图2所示。  查看原图(大图)  由图2可以看出,m序列的功率谱密度的包络是[(sinx)/x]2形的,它约在伪随机序列基本时钟频率的45%带宽内具有均匀功率谱密度,所以用滤波器滤除该频带内的信号就可以

7、近似看作带限白噪声。m序列的均衡性、游程分布、自相关特性和功率谱与随机序列的基本性质很相似,所以m序列属于伪噪声的序列或伪随机序列。2.2FIR数字滤波算法  m序列的功率谱是固定的,要生成带宽可调的数字噪声序列需要对m序列进行低通数字滤波,本文采用的是FIR数字滤波器。  由Lindeberg定理可知,设有独立随机变量序列  查看原图(大图)  该定理证明了由大量微小且独立的随机因素引起,并积累而成的变量,必是一个正态随机变量。FIR滤波器的单位冲激响应为h(n),0≤n≤N一1,输入函数为x(i),则输出函数

8、y(i)可以写为:    查看原图(大图)  该算法需要N次相乘,N-1次累加。为了产生带宽小于5MHz高质量的数字噪声序列,需要构建窄通带、通带阻带转换迅速的低通滤波器,对此仅仅增加单级FIR滤波的冲激相应长度n是不够的,对此本文采用了多级FIR数字滤波的方法。为了使得多路多级FIR滤波器能够在常用FPGA平台上实现,对FIR数字滤波模型进行算法优化,以节约所需逻辑单元

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。