资源描述:
《第一章 有理数》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、七年级数学·上新课标[冀教]第一章有理数1.理解有理数、相反数和绝对值的意义.2.理解乘方的意义,掌握有理数的简单运算.3.理解有理数的运算律,并能运用运算律进行简化计算.4.能用有理数的运算解决简单的问题.1.在现实情境中,经历引入负数的过程,理解有理数的意义,培养数感.2.经历从现实情境中抽象出数轴的过程,能用数轴上的点表示有理数,借助于数轴理解相反数和绝对值的意义,掌握求有理数的相反数和绝对值的方法,知道
2、a
3、的含义(这里的a表示有理数),能比较有理数的大小.3.经历有理数的加、减、乘、除运算法则的获
4、得过程,理解乘方的意义,掌握有理数的加、减、乘、除、乘方及简单的混合运算.注重使学生领会数学知识与现实生活的联系,培养学生认真听讲、积极思考、动手实践、自主探索、合作交流的良好学习习惯.本章从相反意义的量的表示引入负数,将数的范围扩充至有理数,借助数轴直观地表示有理数,进行有理数大小的比较,在有理数范围内讨论加、减、乘、除的运算法则和运算律,进行加、减、乘、除、乘方混合运算.在学习有理数分类、归纳有理数运算法则的过程中,初步理解分类讨论的思想;结合实例进行探究或验证等活动,理解有理数的减法可以转化为加法,有
5、理数的除法可以转化为乘法,渗透转化思想.本章教材选取大量日常生活中的实例为背景材料,通过观察、试验、归纳、类比等方式理解有理数的有关概念,使学生认识到数的扩充来源于实际的生活需要.在知识的呈现上,本单元的主线是:背景知识——知识形成——揭示联系.创设问题情境,帮助学生理解运算律,有利于提高学生的运算能力.【重点】1.有理数的相关概念.2.有理数的混合运算.3.运用有理数的运算解决简单的实际问题.【难点】1.绝对值的概念.2.有理数的运算律.1.负数是一个比较抽象的概念,在教学中应该让学生充分了解引入负数的必
6、要性和实际背景,通过生活中具有相反意义的量的讲解,让学生接受负数的概念.2.本章的重点内容是有理数的运算,所以一定要让学生有足够的练习机会.只有通过一定量的运算实践,才能真正体会并熟练掌握有理数运算的一些技巧.让学生通过计算、观察、猜测、归纳等数学活动,自己总结出有理数的运算律.3.绝对值概念的学习也要有一个循序渐进的过程.与绝对值相关的知识,如数轴上两点之间的距离的表示、绝对值不等式等,都是在后续学习中要专门安排的,因此这里不要涉及.本章安排绝对值的概念的目的是为有理数运算作准备,会求一个数的绝对值就达到
7、了本章的要求.教科书中用字母表示一个数的绝对值的结论,只是给出一个数的绝对值的符号表示,教学时不要对这个符号表示进行变式训练,更不要在绝对值中出现字母并加以讨论.4.计算器是一个既简便又实用的计算工具,让学生通过实际操作,掌握计算器的基本用法.5.在本章的学习中,要注意数形结合思想、转化与化归思想、分类讨论思想的应用.1.1正数和负数2课时1.2数轴1课时1.3绝对值与相反数1课时1.4有理数的大小1课时1.5有理数的加法2课时1.6有理数的减法1课时1.7有理数的加减混合运算1课时1.8有理数的乘法2课时
8、1.9有理数的除法1课时1.10有理数的乘方1课时1.11有理数的混合运算1课时1.12计算器的使用1课时回顾与反思1课时1.1正数和负数能用正负数表示生活中具有相反意义的量,知道具有相反意义的两个量之间的关系.经历从现实生活中的实例引入负数的过程,体会数学与现实生活的密切联系.感受特殊与一般以及分类讨论的数学思想.【重点】1.用“正”和“负”表示生活中具有相反意义的量.2.理解有理数的定义和有理数的分类.【难点】1.认识现实生活中具有相反意义的量是普遍的.2.分类讨论思想的应用.第课时用“正”和“负”表示
9、生活中具有相反意义的量.通过生活实例帮助学生感受具有相反意义的两个量之间的关系.体会生活实际需要与数的范围的扩大之间的关系.【重点】1.感受、理解生活中具有相反意义的量.2.用“正”和“负”表示生活中具有相反意义的量.【难点】用“正”和“负”表示生活中具有相反意义的量.【教师准备】多媒体课件.【学生准备】回忆引进小数、分数时的学习情境.导入一:如图所示,北京某一天的最高气温是零上8℃,用+8℃表示,最低气温是零下2℃,应该怎样表示呢?[设计意图]天气预报是我们日常生活中经常接触的信息,借助于天气预报中表示气
10、温的方法表示相反意义的量,容易使学生体会到数的范围扩大(引入负数)是现实生活的需要,并感受到现实生活与数学的密切联系,体会数学的应用价值,激发学生学习数学的兴趣.导入二:为了表示物体的个数,产生了自然数0,1,2,3,…;在分配物品或测量时,有时结果不是自然数,要用分数(小数)来表示.这些数都是我们以前学习过的.这些数能够满足我们生活中的实际需要吗?[设计意图]提出具有质疑性的问题让学生直接进行思考,唤起学生的探