欢迎来到天天文库
浏览记录
ID:21031439
大小:488.89 KB
页数:7页
时间:2018-10-18
《高三专题复习:直线与圆知识点及经典例题(含答案)》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、【高考专题资料】整理人:智名堂文韬专题:圆的方程、直线和圆的位置关系【知识要点】圆的定义:平面内与一定点距离等于定长的点的轨迹称为圆(一)圆的标准方程形如:这个方程叫做圆的标准方程。说明:1、若圆心在坐标原点上,这时,则圆的方程就是。2、圆的标准方程的两个基本要素:圆心坐标和半径;圆心和半径分别确定了圆的位置和大小,从而确定了圆,所以,只要a,b,r三个量确定了且r>0,圆的方程就给定了。就是说要确定圆的方程,必须具备三个独立的条件确定a,b,r,可以根据3个条件,利用待定系数法来解决。(二)圆的一般方程将圆的标准方程,展开可得。可见,任何一个圆的方程都可以写成:。问题:形如的方程的
2、曲线是不是圆?将方程左边配方得:(1)当时,方程(1)与标准方程比较,方程表示以为圆心,以为半径的圆。(2)当时,方程只有实数解,解为,所以表示一个点.(3)当时,方程没有实数解,因而它不表示任何图形。圆的一般方程的定义:当时,方程称为圆的一般方程.圆的一般方程的特点:(i)的系数相同,不等于零;(ii)没有xy这样的二次项。(三)直线与圆的位置关系1、直线与圆位置关系的种类(1)相离---求距离;(2)相切---求切线;(3)相交---求焦点弦长。2、直线与圆的位置关系判断方法:几何方法主要步骤:(1)把直线方程化为一般式,利用圆的方程求出圆心和半径(2)利用点到直线的距离公式求圆
3、心到直线的距离(3)作判断:当d>r时,直线与圆相离;当d=r时,直线与圆相切;当d0时,直线与圆相交。圆的切线方程总结:当点在圆上时,切线方程为:;当点在圆上时,切线方程为:。【典型例题】类型一:圆的方程例1求过两点、且圆心在直线上的圆的标准方程并判断点与圆的关系.变式1:求过两点、且被直线平分的圆的标准方程.变
4、式2:求过两点、且圆上所有的点均关于直线对称的圆的标准方程.分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点与圆的位置关系,只须看点与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内.解法一:(待定系数法)设圆的标准方程为.∵圆心在上,故.∴圆的方程为.又∵该圆过、两点.∴解之得:,.所以所求圆的方程为.解法二:(直接求出圆心坐标和半径)因为圆过、两点,所以圆心必在线段的垂直平分线上,又因为,故的斜率为1,又的中点为,故的垂直平分线的方程为:即.第7页共7页【高考专题资料】整理人:智名堂文韬又知圆心在
5、直线上,故圆心坐标为∴半径.故所求圆的方程为.又点到圆心的距离为.∴点在圆外.例2:求过三点O(0,0),M(1,1),N(4,2)的圆的方程,并求出这个圆的圆心和半径。解:设圆的方程为:x2+y2+Dx+Ey+F=0,将三个点的坐标代入方程ÞF=0,D=-8,E=6Þ圆方程为:x2+y2-8x+6y=0配方:(x-4)2+(y+3)2=25Þ圆心:(4,-3),半径r=5例3:求经过点,且与直线和都相切的圆的方程.分析:欲确定圆的方程.需确定圆心坐标与半径,由于所求圆过定点,故只需确定圆心坐标.又圆与两已知直线相切,故圆心必在它们的交角的平分线上.解:∵圆和直线与相切,∴圆心在这两
6、条直线的交角平分线上,又圆心到两直线和的距离相等.∴.∴两直线交角的平分线方程是或.又∵圆过点,∴圆心只能在直线上.设圆心∵到直线的距离等于,∴.化简整理得.解得:或∴圆心是,半径为或圆心是,半径为.∴所求圆的方程为或.说明:本题解决的关键是分析得到圆心在已知两直线的交角平分线上,从而确定圆心坐标得到圆的方程,这是过定点且与两已知直线相切的圆的方程的常规求法.类型二:切线方程、切点弦方程、公共弦方程例4、已知圆,求过点与圆相切的切线.解:∵点不在圆上,∴切线的直线方程可设为根据∴.解得,所以,即因为过圆外一点作圆得切线应该有两条,可见另一条直线的斜率不存在.易求另一条切线为.说明:上
7、述解题过程容易漏解斜率不存在的情况,要注意补回漏掉的解.本题还有其他解法,例如把所设的切线方程代入圆方程,用判别式等于0解决(也要注意漏解).还可以运用,求出切点坐标、的值来解决,此时没有漏解.第7页共7页【高考专题资料】整理人:智名堂文韬例5、自点A(-3,3)发出的光线l射到x轴上,被x轴反射,其反射光线所在直线与圆相切,求光线所在直线方程。例6、两圆与相交于、两点,求它们的公共弦所在直线的方程.分析:首先求、两点的坐标,再用两点式求直线的方程,但是求
此文档下载收益归作者所有