28章-锐角三角函数(全章课件)

28章-锐角三角函数(全章课件)

ID:20858426

大小:4.58 MB

页数:68页

时间:2018-10-16

28章-锐角三角函数(全章课件)_第1页
28章-锐角三角函数(全章课件)_第2页
28章-锐角三角函数(全章课件)_第3页
28章-锐角三角函数(全章课件)_第4页
28章-锐角三角函数(全章课件)_第5页
资源描述:

《28章-锐角三角函数(全章课件)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、28章锐角三角函数在Rt△ABC中,∠C=90°,由于∠A=45°,所以Rt△ABC是等腰直角三角形,由勾股定理得因此即在直角三角形中,当一个锐角等于45°时,不管这个直角三角形的大小如何,这个角的对边与斜边的比都等于如图,任意画一个Rt△ABC,使∠C=90°,∠A=45°,计算∠A的对边与斜边的比,你能得出什么结论??思考ABC=+==________=综上可知,在一个Rt△ABC中,∠C=90°,当∠A=30°时,∠A的对边与斜边的比都等于,是一个固定值;当∠A=45°时,∠A的对边与斜边的比都等于,也是一个固定值.一般地,当∠A取其他一定度数的锐角时,它的对边与斜边的

2、比是否也是一个固定值?结论问题在图中,由于∠C=∠C'=90°,∠A=∠A'=α,所以Rt△ABC∽Rt△A'B'C'这就是说,在直角三角形中,当锐角A的度数一定时,不管三角形的大小如何,∠A的对边与斜边的比也是一个固定值.并且直角三角形中一个锐角的度数越大,它的对边与斜边的比值越大任意画Rt△ABC和Rt△A'B'C',使得∠C=∠C'=90°,∠A=∠A'=α,那么与有什么关系.你能解释一下吗?探究ABCA'B'C'如图,在Rt△ABC中,∠C=90°,我们把锐角A的对边与斜边的比叫做∠A的正弦(sine),记住sinA即当∠A=30°时,我们有当∠A=45°时,我们有A

3、BCcab对边斜边在图中∠A的对边记作a∠B的对边记作b∠C的对边记作c1、正弦函数同理,sin60°=注意sinA是一个完整的符号,它表示∠A的正弦,记号里习惯省去角的符号“∠”;sinA没有单位,它表示一个比值,即直角三角形中∠A的对边与斜边的比;sinA不表示“sin”乘以“A”。正弦的常见表示:sinA、sin42°、sinβ(省去角的符号)sin∠DEF、sin∠1(不能省去角的符号)例1如图,在Rt△ABC中,∠C=90°,求sinA和sinB的值.解:(1)在Rt△ABC中,因此(2)在Rt△ABC中,因此ABCABC3413例题示范5练一练1.判断对错:A10

4、m6mBC1)如图(1)sinA=()(2)sinB=()(3)sinA=0.6m()(4)SinB=0.8()√√××sinA是一个比值(注意比的顺序),无单位;2)如图,sinA=()×2.在Rt△ABC中,锐角A的对边和斜边同时扩大100倍,sinA的值()A.扩大100倍B.缩小C.不变D.不能确定C练一练3.如图ACB37300则sinA=______.12根据下图,求sinA和sinB的值.ABC35练习解:(1)在Rt△ABC中,因此根据下图,求sinA和sinB的值.ABC125练习解:(1)在Rt△ABC中,因此根据下图,求sinB的值.ABCn练习解:(1

5、)在Rt△ABC中,因此m练习如图,Rt△ABC中,∠C=90度,CD⊥AB,图中sinB可由哪两条线段比求得。DCBA解:在Rt△ABC中,在Rt△BCD中,因为∠B=∠ACD,所以求一个角的正弦值,除了用定义直接求外,还可以转化为求和它相等角的正弦值。如图,∠C=90°CD⊥AB.sinB可以由哪两条线段之比?想一想若AC=5,CD=3,求sinB的值.┌ACBD解:∵∠B=∠ACD∴sinB=sin∠ACD在Rt△ACD中,AD=sin∠ACD=∴sinB==4回味无穷小结拓展1.锐角三角函数定义:2.sinA是∠A的函数ABC∠A的对边┌斜边斜边∠A的对边sinA=4

6、.只有不断的思考,才会有新的发现;只有量的变化,才会有质的进步.Sin300=sin45°=sin60°=3.sinA是线段之间的一个比值,sinA没有单位小结如图,Rt△ABC中,直角边AC、BC小于斜边AB,所以0<sinA<1,0<sinB<1,如果∠A<∠B,则BC<AC,那么0<sinA<sinB<1ABC<1<11.sinA的取值范围是什么?2.结合右图,思考∠A的其他两边的比值是不是也是唯一确定的?发挥你的聪明才智,动手试一试.28.1.2余弦、正切探究如图,在Rt△ABC中,∠C=90°,当锐角A确定时,∠A的对边与斜边的比就随之确定,此时,其他边之间的比是否

7、也确定了呢?为什么?ABC邻边b对边a斜边c当锐角A的大小确定时,∠A的邻边与斜边的比、∠A的对边与邻边的比也分别是确定的,我们把∠A的邻边与斜边的比叫做∠A的余弦(cosine),记作cosA,即把∠A的对边与邻边的比叫做∠A的正切(tangent),记作tanA,即锐角A的正弦、余弦、正切都叫做∠A的锐角三角函数.精讲对于锐角A的每一个确定的值,sinA有唯一确定的值与它对应,所以sinA是A的函数。同样地,cosA,tanA也是A的函数。锐角A的正弦、余弦、正切都叫做∠A的锐角三角函数.1.下图中

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。