中小学数学课程中的数学史

中小学数学课程中的数学史

ID:19799036

大小:51.00 KB

页数:6页

时间:2018-10-06

中小学数学课程中的数学史_第1页
中小学数学课程中的数学史_第2页
中小学数学课程中的数学史_第3页
中小学数学课程中的数学史_第4页
中小学数学课程中的数学史_第5页
资源描述:

《中小学数学课程中的数学史》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、专题11中小学数学课程中的数学史──意义、内容与结构一、数学史在新一轮中小学数学课程中的地位和意义在课程改革前的中小学数学教学大纲和教材中,数学史主要起两方面作用:通过介绍中国古代数学成就进行爱国主义教育;通过提供少量“花絮”提高学生的学习兴趣。在新一轮中小学数学课程中,数学史首先被看作理解数学的一种途径。义务教育阶段各科课程目标都围绕三个基本方面:知识与技能,过程与方法,态度情感价值观,对于理科课程,还进而包括理解科学、技术与社会之间的关系,尝试科学教育与人文教育的融合。数学史对于揭示数学知识的现实来源和应用,对于引导学生体会真正

2、的数学思维过程,创造一种探索与研究的数学学习气氛,对于激发学生对数学的兴趣,培养探索精神,对于揭示数学在文化史和科学进步史上的地位与影响进而揭示其人文价值,都有重要意义。1.揭示数学知识的现实来源和应用历史往往揭示出数学知识的现实来源和应用,从而可以使学生感受到数学在文化史和科学进步史上的地位与影响,认识到数学是一种生动的、基本的人类文化活动,进而引导他们重视数学在当代社会发展中的作用,并且关注数学与其他学科之间的关系。例:数系的扩充;函数概念的演进;从平行公设到非欧几何;解析几何的创立;三角学的演变;数学猜想:提出、发展与解决。2

3、.理解数学思维一般说来,历史不仅可以给出一种确定的数学知识,还可以给出相应知识的创造过程。对这种创造过程的了解,可以使学生体会到一种活的、真正的数学思维过程,而不仅仅是教科书中那些千锤百炼、天衣无缝,同时也相对地失去了生气与天然的、已经被标本化了的数学。从这个意义上说,历史可以引导我们创造一种探索与研究的课堂气氛,而不是单纯地传授知识。这既可以激发学生对数学的兴趣,培养他们的探索精神,历史上许多著名问题的提出与解决方法还十分有助于他们理解与掌握所学的内容。历史的发展过程可以告诉我们,在一个专题、一个概念或一个结果的发展中,哪些思想、

4、方法代表着该内容相对于以往内容的实质性进步,从而更深刻地理解它。历史还可以告诉我们在学习过程中可能发生的困难以及克服该困难的可能的途径。例1几何三大难题:突破尺规作图限制,由初等几何到高等几何和解析几何,由直线和圆到各种高次曲线及特殊曲线。例2不可通约量的发现:突破四则运算,从有限到无穷,从离散到连续,比例理论的发展与深化。例3解析几何:转换的思想;坐标思想;方程与曲线对应的思想。例4圆面积计算:割补近似:古埃及(约1650B.C.);割圆术的萌芽:Antiphon,Bryson(公元前5世纪);穷竭法:Eudoxus(公元前4世纪

5、),Archimedes割圆术(公元前3世纪)。例5正负数,零,无理数,复数。例6空间观念,直观与抽象,有限与无穷。比较历史上的不同时期、不同民族或地区对同类问题的不同处理方式,或同类方法的不同地位与应用,可以启发学生的解题思路,并从中比较优劣,体会到数学思维的真谛。例7记数法:巴比伦,埃及,希腊,罗马,玛雅,印度,中国。6例8比例:希腊,中国。例9不可通约量与开方不尽数。例10高次方程:中国的数值解法;欧洲的公式解。历史可以为我们提供那些答案是“不可能”或“不存在”的问题,而对这些问题的探索,是数学研究的一个极为重要的方面,也是数

6、学思维品质的一个重要方面。例:几何三大难题;试证第五公设;一元n次方程的根式解。3.数学历史名题的教育价值对于那些需要通过重复训练才能达到的目标,数学历史名题可以使这种枯燥乏味的过程变得富有趣味和探索意义,从而极大地调动学生的积极性,提高他们的兴趣。对于学生来说,历史上的问题是真实的,因而更为有趣;历史名题的提出一般来说都是非常自然的,它或者直接提供了相应数学内容的现实背景,或者揭示了实质性的数学思想方法,这对于学生理解数学内容和方法都是重要的;许多历史名题的提出与解决与大数学家有关,让学生感到他本人正在探索一个曾经被大数学家探索过

7、的问题,或许这个问题还难住了许多有名的人物,学生会感到一种智力的挑战,也会从学习中获得成功的享受,这对于学生建立良好的情感体验无疑是十分重要的;最后,历史名题往往可以提供生动的人文背景。向学生展示历史上的开放性的数学问题将使他们了解到,数学并不是一个静止的、已经完成的领域,而是一个开放性的系统,认识到数学正是在猜想、证明、错误中发展进化的,数学进步是对传统观念的革新,从而激发学生的非常规思维,使他们感受到,抓住恰当的、有价值的数学问题将是激动人心的事情。例:尼科马修斯猜想,费尔马大定理,哥德巴赫猜想,四色定理。数学中有许多著名的反例

8、,通常的教科书中很少会涉及它们。结合历史介绍一些数学中的反例,可以从反面给学生以强烈的震撼,加深他们对相应问题的理解。4.榜样的激励作用帕斯卡16岁成为射影几何的奠基人之一,19岁发明原始计算器。牛顿22岁发现一般的二项式定理,23岁

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。