资源描述:
《2016-2017年高中数学人教a版选修1-2学业分层测评3合情推理word版含解析》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、学业分层测评(建议用时:45分钟)[学业达标]一、选择题1.(2016·郑州高二检测)下列说法正确的是( )A.由合情推理得出的结论一定是正确的B.合情推理必须有前提有结论C.合情推理不能猜想D.合情推理得出的结论无法判定正误【解析】 合情推理得出的结论不一定正确,故A错;合情推理必须有前提有结论,故B对;合情推理中类比推理是根据两个或两类对象有部分属性相同,从而推出它们的其他属性也相同的推理,可进行猜想,故C错;合情推理得出的结论可以进行判定正误,故D错.【答案】 B2.下面使用类比推理恰当的是( )A.“若a·3=b·3,则a=b”类比推出“若a·0=b
2、·0,则a=b”B.“(a+b)c=ac+bc”类比推出“(a·b)c=ac·bc”C.“(a+b)c=ac+bc”类比推出“=+(c≠0)”D.“(ab)n=anbn”类比推出“(a+b)n=an+bn”【解析】 由实数运算的知识易得C项正确.【答案】 C3.(2016·大连高二检测)用火柴棒摆“金鱼”,如图217所示,图217按照上面的规律,第n个“金鱼”图需要火柴棒的根数为( )A.6n-2 B.8n-2C.6n+2D.8n+2【解析】 从①②③可以看出,从第②个图开始每个图中的火柴棒都比前一个图中的火柴棒多6根,故火柴棒数成等差数列,第一个图中火柴棒为
3、8根,故可归纳出第n个“金鱼”图需火柴棒的根数为6n+2.【答案】 C4.对命题“正三角形的内切圆切于三边中点”可类比猜想:正四面体的内切球切于四面体各正三角形的( )A.一条中线上的点,但不是中心B.一条垂线上的点,但不是垂心C.一条角平分线上的点,但不是内心D.中心【解析】 由正四面体的内切球可知,内切球切于四个面的中心.【答案】 D5.(2016·南昌调研)已知整数对的序列为(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4),…,则第57个数对是( )A.(2,
4、10)B.(10,2)C.(3,5)D.(5,3)【解析】 由题意,发现所给数对有如下规律:(1,1)的和为2,共1个;(1,2),(2,1)的和为3,共2个;(1,3),(2,2),(3,1)的和为4,共3个;(1,4),(2,3),(3,2),(4,1)的和为5,共4个;(1,5),(2,4),(3,3),(4,2),(5,1)的和为6,共5个.由此可知,当数对中两个数字之和为n时,有n-1个数对.易知第57个数对中两数之和为12,且是两数之和为12的数对中的第2个数对,故为(2,10).【答案】 A二、填空题6.把正数排列成如图218甲的三角形数阵,然后擦
5、去偶数行中的奇数和奇数行中的偶数,得到如图218乙的三角形数阵,现把图乙中的数按从小到大的顺序排成一列,得到一个数列{an},若an=2017,则n=__________.【导学号:19220014】12345678910111213141516甲 12457910121416乙图218【解析】 图乙中第k行有k个数,第k行最后的一个数为k2,前k行共有个数,由44×44=1936,45×45=2025知an=2017出现在第45行,第45行第一个数为1937,第+1=41个数为2017,所以n=+41=1031.【答案】 10317.(2016·日照高二检测)
6、二维空间中圆的一维测度(周长)l=2πr,二维测度(面积)S=πr2,观察发现S′=l;三维空间中球的二维测度(表面积)S=4πr2,三维测度(体积)V=πr3,观察发现V′=S.已知四维空间中“超球”的三维测度V=8πr3,猜想其四维测度W=________.【解析】 因为V=8πr3,所以W=2πr4,满足W′=V.【答案】 2πr48.已知{bn}为等比数列,b5=2,则b1b2b3…b9=29.若{an}为等差数列,a5=2,则{an}的类似结论为________.【解析】 结合等差数列的特点,类比等比数列中b1b2b3…b9=29可得,在{an}中,若
7、a5=2,则有a1+a2+a3+…+a9=2×9.【答案】 a1+a2+a3+…+a9=2×9三、解答题9.已知数列,,…,,…,Sn为其前n项和,计算S1,S2,S3,S4,观察计算结果,并归纳出Sn的公式.【解】 S1====,S2=+===,S3=+===,S4=+===,由此归纳猜想Sn=.10.(2016·咸阳高二检测)在平面几何中,研究正三角形内任意一点与三边的关系时,我们有真命题:边长为a的正三角形内任意一点到各边的距离之和是定值a.类比上述命题,请你写出关于正四面体内任意一点与四个面的关系的一个真命题,并给出简要的证明.【解】 类比所得的真命题是
8、:棱长为a的正四面体内任