欢迎来到天天文库
浏览记录
ID:18242191
大小:58.00 KB
页数:5页
时间:2018-09-15
《4_平行线的性质_练习2》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、《第七章4 平行线的性质》讲解与例题1.平行线的性质公理平行线的性质公理:两条平行线被第三条直线所截,同位角相等.简单记为:两直线平行,同位角相等.如图,推理符号表示为:∵AB∥CD,∴∠1=∠2.谈重点两直线平行,同位角相等①两直线平行的性质公理是推理论证后面两个性质定理的基础;②“同位角相等”是在“两直线平行”的前提下才成立的,是平行线特有的性质.要避免一提同位角就以为其相等的错误;③两直线平行的性质公理与两直线平行的判定公理的条件与结论是互逆的.其中判定公理是在已知同位角相等(数量关系)的前提下推理论证两直线的平行位置关系,是由角到线的推理过
2、程;而两直线平行的性质公理是在已知两直线平行的前提下推理论证同位角相等的数量关系,是由线到角的推理过程.【例1】如图,AB∥CD,CE平分∠ACD,若∠1=25°,那么∠2的度数是________.解析:本题考查平行线的性质:两直线平行,同位角相等.由条件CE平分∠ACD,∠1=25°,可得∠ACD=2∠1=50°.而∠2与∠ACD是同位角,根据“两直线平行,同位角相等”可得∠2=∠ACD=50°.答案:50°点评:根据平行直线求角时,要先观察两个角之间的关系.2.平行线的性质定理(1)性质定理1两条平行线被第三条直线所截,同旁内角互补.简单记为:
3、两直线平行,同旁内角互补.符号表示:∵AB∥CD,∴∠2+∠3=180°.(2)性质定理2两条平行线被第三条直线所截,内错角相等.简单记为:两直线平行,内错角相等.符号表示:∵AB∥CD,∴∠2=∠4.点评:①平行线的性质定理是在平行线性质公理的基础上推理得出的;②从平行线得到角相等或互补的关系;③内错角相等或同旁内角互补的前提条件是“两条直线平行”.要避免出现一提内错角就相等或一提同旁内角就互补的错误.【例2-1】某商品的商标可以抽象为如图所示的三条线段,其中AB∥CD,∠EAB=45°,则∠FDC的度数是( ).A.30°B.45°C.60°
4、D.75°解析:由邻补角的定义求得∠BAD的度数,又由AB∥CD,可求得∠ADC的度数,再求出∠FDC的度数即可.∵∠EAB=45°,∴∠BAD=180°-∠EAB=180°-45°=135°.∵AB∥CD,∴∠ADC=∠BAD=135°.∴∠FDC=180°-∠ADC=45°.故选B.答案:B点评:此题考查了平行线的性质.注意两直线平行,内错角相等.【例2-2】如图,直线AB,CD相交于点E,DF∥AB.若∠AEC=100°,则∠D等于( ).A.70°B.80°C.90°D.100°解析:由对顶角相等,可得∠BED=∠AEC=100°,由DF
5、∥AB可知同旁内角∠DEB和∠D互补,可求得∠D=180°-∠BED=80°.故选B.答案:B3.证明的步骤(1)证明的一般步骤:①理解题意;②根据题意正确画出图形;③结合图形,写出“已知”和“求证”;④分析题意,探索证明的思路;⑤依据寻求的思路,运用数学符号和数学语言条理清晰地写出证明过程;⑥检查表达过程是否正确、完善.(2)证明的思路:可以从求证出发向已知追溯,也可以由已知向结论探索,还可以从已知和结论两个方向同时出发,互相接近.点评:对于用文字叙述的命题的证明,要先分清命题的条件和结论,然后根据题意画出图形,写出已知和求证,证明即可.4.借助
6、辅助线构造平行线在有平行线的条件下,证明两个角相等或求某个角,当这两个角不是两条平行线所截得的同位角、同旁内角或内错角时,往往要利用其他的角,转化为平行线所截的角.但有些题目中某些条件所对应的图形没有或不完整,这时就需要通过添加辅助线去构造某些“基本图形”,再由图形联想相关性质,从而确定方法,达到解题的目的.释疑点平行线判定与性质的应用以平行为条件的求值或证明角相等的问题中,关键要分析出哪对角相等(或互补),再进行转化,从而求出结论中的角或完成证明.【例3】证明“垂直于同一条直线的两条直线互相平行”.分析:本题是文字证明题.根据文字证明的一般步骤,
7、先根据题意画出两条直线a,b都与直线c垂直,根据已知和图形写出本题的已知和求证,已知是直线a⊥c,b⊥c,求证是a∥b.证明两条直线平行,可根据平行线的判定方法,证明同位角相等就可以.然后写出证明过程.解:已知:如图,直线a,b被直线c所截,且a⊥c,b⊥c.求证:a∥b.证明:∵a⊥c,b⊥c(已知),∴∠1=90°,∠2=90°(垂直的定义).∴∠1=∠2(等量代换).∴a∥b(同位角相等,两直线平行).点技巧文字证明题的步骤 文字证明题的已知和求证要结合图形来写,因此在分析题意时,要确定应该画什么图形.书写证明过程时,要注重格式,注意推理的
8、条理性,每一步都要有理有据.【例4】如图,AB∥CD,若∠ABE=120°,∠C=35°,则∠BEC=__________
此文档下载收益归作者所有