资源描述:
《高一三角函数公式及诱导公式习题(附答案)》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、三角函数公式1.同角三角函数基本关系式sin2α+cos2α=1=tanαtanαcotα=12.诱导公式(奇变偶不变,符号看象限)(一)sin(π-α)=sinαsin(π+α)=-sinαcos(π-α)=-cosαcos(π+α)=-cosαtan(π-α)=-tanαtan(π+α)=tanαsin(2π-α)=-sinαsin(2π+α)=sinαcos(2π-α)=cosαcos(2π+α)=cosαtan(2π-α)=-tanαtan(2π+α)=tanα(二)sin(-α)=cosαsin(+α)=cosαcos(-α)=sinαcos(+α)=-si
2、nαtan(-α)=cotαtan(+α)=-cotαsin(-α)=-cosαsin(+α)=-cosαcos(-α)=-sinαcos(+α)=sinαtan(-α)=cotαtan(+α)=-cotαsin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanα3.两角和与差的三角函数cos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβsin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβtan(α+β)=tan(α-β)=4.二倍角公式sin2α
3、=2sinαcosαcos2α=cos2α-sin2α=2cos2α-1=1-2sin2αtan2α=otherstaffoftheCentre.Duringthewar,ZhuwastransferredbacktoJiangxi,andDirectorofthenewOfficeinJingdezhen,JiangxiCommitteeSecretary.Startingin1939servedasrecorderoftheWestNorthOrganization,SecretaryoftheSpecialCommitteeAfterthevictoryofth
4、elongMarch,hehasbeentheNorthwestOfficeoftheFederationofStateenterprisesMinister,ShenmufuguSARmissions,DirectorofNingxiaCountypartyCommitteeSecretaryandrecorderoftheCountypartyCommitteeSecretary,Ministersand1.公式的变形(1)升幂公式:1+cos2α=2cos2α1—cos2α=2sin2α(2)降幂公式:cos2α=sin2α=(3)正切公式变形:tanα+tan
5、β=tan(α+β)(1-tanαtanβ)tanα-tanβ=tan(α-β)(1+tanαtanβ)(4)万能公式(用tanα表示其他三角函数值)sin2α=cos2α=tan2α=2.插入辅助角公式asinx+bcosx=sin(x+φ)(tanφ=)特殊地:sinx±cosx=sin(x±)3.熟悉形式的变形(如何变形)1±sinx±cosx1±sinx1±cosxtanx+cotx若A、B是锐角,A+B=,则(1+tanA)(1+tanB)=24.在三角形中的结论若:A+B+C=π,=则有tanA+tanB+tanC=tanAtanBtanCtantan+t
6、antan+tantan=1otherstaffoftheCentre.Duringthewar,ZhuwastransferredbacktoJiangxi,andDirectorofthenewOfficeinJingdezhen,JiangxiCommitteeSecretary.Startingin1939servedasrecorderoftheWestNorthOrganization,SecretaryoftheSpecialCommitteeAfterthevictoryofthelongMarch,hehasbeentheNorthwestOffic
7、eoftheFederationofStateenterprisesMinister,ShenmufuguSARmissions,DirectorofNingxiaCountypartyCommitteeSecretaryandrecorderoftheCountypartyCommitteeSecretary,Ministersand三角函数的诱导公式1一、选择题1.如果
8、cosx
9、=cos(x+π),则x的取值集合是()A.-+2kπ≤x≤+2kπB.-+2kπ≤x≤+2kπC.+2kπ≤x≤+2kπD.(2k+1)π≤x≤2(k+1)π(以上k