欢迎来到天天文库
浏览记录
ID:17859175
大小:27.50 KB
页数:6页
时间:2018-09-07
《初中数学数形结合思想教学论文 》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、初中数学数形结合思想教学论文初中数学数形结合思想教学论文初中数学数形结合思想教学论文初中数学数形结合思想教学论文 一、渗透数形结合的思想,养成用数形结合分析问题的意识 每个学生在日常生活中都具有一定的图形知识,如绳子和绳子上的结、刻度尺与它上面的刻度,温度计与其上面的温度,我们每天走过的路线可以看作是一条直线,教室里每个学生的坐位等等,我们利用学生的这一认识基础,把生活中的形与数相结合迁移到数学中来,在教学中进行数学数形结合思想的渗透,挖掘教材提供的机会,把握渗透的契机。如数与数轴,一对有序实数与平面直角坐标系,一元一次不等式的解集与一次函数的图象,二元一次方程组的解与一次函数图象之间
2、的关系等,都是渗透数形结合思想的很好机会。 如:直线是由无数个点组成的集合,实数包括正实数、零、负实数也有无数个,因为它们的这个共性所以用直线上无数个点来表示实数,这时就把一条直线规定了原点、正方向和单位长度,把这条直线就叫做数轴。建立了数与直线上的点的结合。即:数轴上的每个点都表示一个实数,每个实数都能在数轴上找到表示它的点,建立了实数与数轴上的点的一一对应关系,由此让学生理解了相反数、绝对值的几何意义。建立数轴后及时引导学生利用数轴来进行有理数的比较大小,学生通过观察、分析、归纳总结得出结论:通常规定右边为正方向时,在数轴上的两个数,右边的总大于左边的,正数大于零,零大于负数。让学生
3、理解数形结合思想在解决问题中的应用。为下面进一步学习数形结合思想奠定基础。 -1--,--3---,---6--,----10--,--15----,--21----,---28--,--36---……-----在讲解通过形来说明数的找规律问题中应该从形中找数。如第一个图形有一个小正方形,第二个图形有三个小正方形,第三个图形有六个小正方形,那么第四个图形将有几个小正方形呢?从前三个中寻找规律,第二个比第一个多两个小正方形,第三个比第二个多三个小正方形,那么第四个就比第三个多四个小正方形,第四个图形就有十个小正方形,第五个比第四个多五个小正方形,那么第五个就有十五个小正方形,依次类推,第六
4、个图形就有二十一个小正方形,第七个图形就有二十八个小正方形,第八个图形就有三十六个小正方形。那么上面的横线上分别填上10、15、21、28、36,第n个图形就应该有1+2+3+4+5+6……+n=个小正方形。这也体现数形结合的思想。 例2:小明的父母出去散步,从家走了20分到一个离家900米的报亭,母亲随即按原速返回。父亲看了10分报纸后,用了15分返回家。你能在下面的平面直角坐标系中画出表示父亲和母亲离家的时间和距离之间的关系吗? 结合探索规律和生活中的实际问题,反复渗透,强化数学中的数形结合思想,使学生逐步形成数学学习中的数形结合的意识。并能在应用数形结合思想的时候注意一些基本原则
5、,如是知形确定数还是知数确定形,在探索规律的过程中应该遵循由特殊到一般的思路进行,从而归纳总结出一般性的结论。 二、学习数形结合思想,增强解决问题的灵活性,提高分析问题、解决问题的能力 在教学中渗透数形结合思想时,应让学生了解,所谓数形结合就是找准数与形的契合点,根据对象的属性,将数与形巧妙地结合起来,有效地相互转化,就成为解决问题的关键所在。 数形结合的结合思想主要体现在以下几种: 用方程、不等式或函数解决有关几何量的问题; (2)用几何图形或函数图象解决有关方程或函数的问题;解决一些与函数有关的代数、几何综合性问题; 以图象形式呈现信息的应用性问题。 例1:一个角的补角是
6、这个角余角的3倍,求这个角的度数。 解:设这个角为X0,则它的余角为,它的补角为根据题意得: 1800-x0=3 解这个方程得:x0=450 所以这个角为450 例2:一块四周镶有宽度相等的花边的地毯如图所示,它的长为8m,宽为5m。如果地毯中央长方形图案的面积为18m2,那么花边有多宽? SHAPE*MERGEFORMAT 如果设花边的宽为xm,那么地毯中央长方形图案的长_(8-2x)_________m,宽为___(_5-2x)________m.根据题意,可得方程 ______(8-2x)(5-2x)=18_______。 解这个方程得出x的值 这就是用方程的方
7、法来解决有关几何图形的问题 例4:A、B两地相距150千米,甲、乙两人骑自行车分别从A、B两地相向而行。假设他们都保持匀速行驶,则他们各自到A地的距离s(千米)都是骑车时间t(时)的一次函数. 1时后乙距A地120千米, 2时后甲距A地40千米. 问经过多长时间两人相遇? [分析]可以分别作出两人s与t之间的关系图象, 找出交点的横坐标就行了。 例5:下图中L1,L2分别表示B离岸起两船相对于海岸的距离s与
此文档下载收益归作者所有