drive.ai路测,用深度学习打造完整的自动驾驶系统

drive.ai路测,用深度学习打造完整的自动驾驶系统

ID:15305866

大小:26.00 KB

页数:6页

时间:2018-08-02

drive.ai路测,用深度学习打造完整的自动驾驶系统_第1页
drive.ai路测,用深度学习打造完整的自动驾驶系统_第2页
drive.ai路测,用深度学习打造完整的自动驾驶系统_第3页
drive.ai路测,用深度学习打造完整的自动驾驶系统_第4页
drive.ai路测,用深度学习打造完整的自动驾驶系统_第5页
资源描述:

《drive.ai路测,用深度学习打造完整的自动驾驶系统》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、-------------------------------------------------------精选财经经济类资料----------------------------------------------Drive.ai路测,用深度学习打造完整的自动驾驶系统 【各位读友,本文仅供参考,望各位读者知悉,如若喜欢或者需要本文,可点击下载下载本文,谢谢!】  在自动驾驶领域,大多数人都不知道Drive.ai的存在,去年以来,这家研发如何将深度学习应用于自动驾驶的公司一致处于秘密状态。如今,Drive.ai成为第十三家拿到牌照的公司,获准在加州公共道路上测试无人驾驶汽车。IEEE

2、Spectrum采访了Drive.ai两位创始人SameepTandon和CarolReiley,与他们探讨了为什么他们的无人驾驶汽车技术能让汽车自动化比以前更有效率,适应性更强,以及更加可靠安全。  大约一年前,Drive.ai-----------------------------------------------最新财经经济资料----------------感谢阅读-----------------------------------~6~-------------------------------------------------------精选财经经济类资料-----

3、-----------------------------------------从斯坦福大学人工智能实验室分离出来,各领域内在深度学习系统研发方面极富经验的专家组成了公司的核心团队,他们精通自然语言处理、计算机视觉以及自动驾驶。「该团队开辟了深度学习的规模化应用,这也是如今深度学习能够如此成功的原因之一。」公司CEOTandon说。  这些研究人员在斯坦福进行了多年研究,之前他们意识到,将他们的理念和技术进行商业化和产品化的最好方式就是成立一家公司。因此,他们将攻读博士攻读搁置在一边,创办了Drive.ai。  「Drive.ai是一家深度学习公司,」Reiley-----------

4、------------------------------------最新财经经济资料----------------感谢阅读-----------------------------------~6~-------------------------------------------------------精选财经经济类资料----------------------------------------------表示,「通过将深度学习应用于全自动集成驾驶堆栈,从而解决了车辆的自动驾驶问题,从感知到运动规划,再到控制,这和其他公司零散的自动驾驶解决方案完全不同。我们采用了整体架构来

5、创造一种更加无缝的解决方案。」  什么是深度学习?为什么我们要对其应用于自动驾驶保持关注?Tandon说:  当你在开发自动驾驶汽车时,最难的部分就是处理一些极端情况,比如下雨、下雪等天气状况。现在,人们通过将这些特定规则写进程序的方式来解决这些问题。而深度学习的方法则是基本对数据的理解,然后去学习。  「通常来说,在深度学习之前,做机器学习完全就是关于特征选取,」Reiley说,「那是非常原始的做法,并且做起来很难,让这些算法去识别各种东西非常困难,也很耗时。」她认为深度学习类似于人类的学习方式。「你向算法展示好的例子或者坏的例子,然后它就学着形成概念。对于极端复杂的动态环境来说,我们

6、相信深度学习是解决这一问题的最佳方法。」  Drive.ai-----------------------------------------------最新财经经济资料----------------感谢阅读-----------------------------------~6~-------------------------------------------------------精选财经经济类资料----------------------------------------------的第一步就是让汽车开上马路,开始收集数据来构建算法经验。「这不是收集形式的英里数和小时数

7、,」Tandon说,「这都是为了有合适类别的经验和数据扩充来训练系统——这意味着我们的团队要知道追求什么才能使保证车里的系统可用。从模拟环境和封闭线路走向公共道路,这对我们公司来说是极大的一步,我们非常谨慎的完成着我们的职责。」  对于那辆真实的汽车长什么样子,Drive.ai不太愿意进行评论。(注:如果机器之心的读者在加州山景城的某处看到它,请给我们发张照片:)  毫无疑问,软件是工程师们关注的重点,这也是任何自动驾驶系统中最困难

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。