培优专题3_用分组分解法进行因式分解(含答案)

培优专题3_用分组分解法进行因式分解(含答案)

ID:15115677

大小:225.50 KB

页数:9页

时间:2018-08-01

培优专题3_用分组分解法进行因式分解(含答案)_第1页
培优专题3_用分组分解法进行因式分解(含答案)_第2页
培优专题3_用分组分解法进行因式分解(含答案)_第3页
培优专题3_用分组分解法进行因式分解(含答案)_第4页
培优专题3_用分组分解法进行因式分解(含答案)_第5页
资源描述:

《培优专题3_用分组分解法进行因式分解(含答案)》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、4、用分组分解法进行因式分解【知识精读】分组分解法的原则是分组后可以直接提公因式,或者可以直接运用公式。使用这种方法的关键在于分组适当,而在分组时,必须有预见性。能预见到下一步能继续分解。而“预见”源于细致的“观察”,分析多项式的特点,恰当的分组是分组分解法的关键。应用分组分解法因式分解,不仅可以考察提公因式法,公式法,同时它在代数式的化简,求值及一元二次方程,函数等学习中也有重要作用。下面我们就来学习用分组分解法进行因式分解。【分类解析】1.在数学计算、化简、证明题中的应用例1.把多项式分解因式,所得的结果为()分析:先去括号,合并同类项,然后分组搭配

2、,继续用公式法分解彻底。解:原式故选择C例2.分解因式分析:这是一个六项式,很显然要先进行分组,此题可把-9-分别看成一组,此时六项式变成二项式,提取公因式后,再进一步分解;此题也可把,分别看作一组,此时的六项式变成三项式,提取公因式后再进行分解。解法1:解法2:2.在几何学中的应用例:已知三条线段长分别为a、b、c,且满足证明:以a、b、c为三边能构成三角形分析:构成三角形的条件,即三边关系定理,是“两边之和大于第三边,两边之差小于第三边”证明:-9-3.在方程中的应用例:求方程的整数解分析:这是一道求不定方程的整数解问题,直接求解有困难,因等式两边都

3、含有x与y,故可考虑借助因式分解求解解:4、中考点拨例1.分解因式:_____________。解:说明:观察此题是四项式,应采用分组分解法,中间两项虽符合平方差公式,但搭配在一起不能分解到底,应把后三项结合在一起,再应用完全平方公式和平方差公式。例2.分解因式:____________解:-9-说明:前两项符合平方差公式,把后两项结合,看成整体提取公因式。例3.分解因式:____________解:说明:分组的目的是能够继续分解。5、题型展示:例1.分解因式:解:说明:观察此题,直接分解比较困难,不妨先去括号,再分组,把4mn分成2mn和2mn,配成完

4、全平方和平方差公式。例2.已知:,求ab+cd的值。解:ab+cd=-9-说明:首先要充分利用已知条件中的1(任何数乘以1,其值不变),其次利用分解因式将式子变形成含有ac+bd因式乘积的形式,由ac+bd=0可算出结果。例3.分解因式:分析:此题无法用常规思路分解,需拆添项。观察多项式发现当x=1时,它的值为0,这就意味着的一个因式,因此变形的目的是凑这个因式。解一(拆项):解二(添项):说明:拆添项法也是分解因式的一种常见方法,请同学们试拆一次项和常数项,看看是否可解?【实战模拟】-9-1.填空题:2.已知:3.分解因式:4.已知:,试求A的表达式。

5、-9-5.证明:-9-【试题答案】1.(1)解:(2)解:(3)解:2.解:说明:因式分解是一种重要的恒等变形,在代数式求值中有很大作用。3.解:4.解:-9-5.证明:-9-

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。