欢迎来到天天文库
浏览记录
ID:15065485
大小:55.50 KB
页数:7页
时间:2018-08-01
《最新人教版六年级数学下册第五单元学案》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、6.5.1鸽巢问题(一)班级姓名【学习目标】1.通过观察、比较、判断、归纳等方法,理解“抽屉原理”。2.能够根据“抽屉原理”解决生活中的实际问题。【学习过程】一、知识铺垫3个同学坐2张凳子。猜一猜结果怎样?我发现:。二、自主探究1.例:把4只铅笔放进3个文具盒中,有几种不同的方法?枚举法:我们用括号里的三个数字,分别代表三个文具盒中铅笔的枝数,则有(4,0,0),(),(),()等几种情况。假设法:假设先在每个文具盒中放1枝铅笔,3个文具盒里就放了______枝铅笔,还剩下_____枝,放入任意一个文
2、具盒,那么这个文具盒中就有______枝铅笔。小组讨论:不管用哪种方法,文具盒中的铅笔枝数总有什么特点?小结:把4枝铅笔放到3个盒子里,不管怎么放,总有一个盒子里至少有_____枝铅笔。2.思考:把上述例题中的铅笔换成苹果,盒子换成抽屉,是否还有刚才的结论?结论:__________________________________________________________。3.把5个苹果放入4个抽屉,总有一个抽屉里至少有_____个苹果?把7个苹果放入6个抽屉,总有一个抽屉里至少有_____个苹
3、果?把100个苹果放入99个抽屉,结论:______________________________。你有什么发现:__________________________________________________。当苹果个数比较多时,我们一般用什么方法思考?说一说枚举法和假设法的优缺点。4.小结:把(n+1)个苹果放进n个抽屉里,____________________________________________________________________。5.回顾反思。通过以上学习你收获
4、了什么?你还有哪些疑问或困惑可以先在小组内商讨,解决不了的可以告诉老师一起解决。三、课堂达标1.6只鸽子飞回5个鸽舍,至少有2只鸽子要飞进同一个鸽舍里,为什么?2.一盒围棋棋子,黑白子混放,我们任意摸出3个棋子,结果怎样?(提示:把什么看作物体,什么看作抽屉?)3.足球队共有13名学生,一定至少有2名学生的生日在同一个月里,为什么?【学习评价】自评师评6.5.2鸽巢问题(二)班级姓名【学习目标】1.通过观察、比较、判断、归纳等方法,进一步理解“抽屉原理”。2.能够根据“抽屉原理”解决生活中的实际问题。
5、【学习过程】一、知识铺垫把4个苹果放进3个抽屉,总有:__________________________________。把n+1个物体放入n个抽屉,总有:_____________________________________。思考:如果物体的个数比抽屉多2个、3个、4个……我们又能得出什么结论呢?二、自主探究1.例:把5本书放进2个抽屉中,有几种不同的方法?枚举法:5本书放进2个抽屉只有(5,0)、()、()三种情况。假设法:假设先在每个抽屉中放2本书,2个抽屉里就放了______本书,还剩下
6、_____本,放入任意一个抽屉,那么这个抽屉中就有______本书。小组讨论:不管用哪种方法,抽屉中的书本数总有什么特点?小结:把5本书放进2个抽屉中,不管怎么放,总有一个抽屉里至少有_____本书。2.7本书放进2个抽屉里,总有一个抽屉里面至少有_____本书。9本书放进2个抽屉里,总有一个抽屉里面至少有_____本书。125本书放进2个抽屉里,总有一个抽屉里面至少有____本书。你有什么发现:__________________________________________________。小组
7、讨论:当苹果个数比较多时,我们一般用什么方法思考?可不可以用数学式子来计算呢?3.如果把5本书放进3个抽屉里面,会是什么情况呢?结论:把5本书放进3个抽屉里面,总有一个抽屉里面至少有____本书。你有什么发现:__________________________________________________。4.小结:把a个物体放进n个抽屉,如果a÷n=b……c(c≠0),那么一定有一个抽屉至少可以放_________个物体。通过以上学习你收获了什么?你还有哪些疑问或困惑可以先在小组内商讨,解决不了
8、的可以告诉老师一起解决。5.回顾反思。三、课堂达标1.学校要把11名同学分到2个班级,请问总有一个班级至少有几名同学?为什么?2.8只鸽子飞会3个鸽舍,至少有几个鸽子要飞进同一个鸽舍?为什么3.张叔叔参加飞镖比赛,投了5镖,成绩是41环。张叔叔至少有一镖不低于9环。为什么?四、知识拓展。实验小学的六年级有若干学生,若已知学生中至少有两人的生日是同一天,那么,六年级至少有多少名学生?其中六(1)班有45名学生,那么在六(1)班中至少有多少名学生出生在同一月
此文档下载收益归作者所有