high-order neural network structures for identification of dynamical systems

high-order neural network structures for identification of dynamical systems

ID:14861354

大小:952.44 KB

页数:10页

时间:2018-07-30

high-order neural network structures for identification of dynamical systems_第1页
high-order neural network structures for identification of dynamical systems_第2页
high-order neural network structures for identification of dynamical systems_第3页
high-order neural network structures for identification of dynamical systems_第4页
high-order neural network structures for identification of dynamical systems_第5页
资源描述:

《high-order neural network structures for identification of dynamical systems》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、422IEEETRANSACTIONSONNEURALNETWORKS,VOL.6,NO.2,MARCH1995High-OrderNeuralNetworkStructuresforIdentificationofDynamicalSystemsEliasB.Kosmatopoulos,MariosM.Polycarpou,Member,IEEE,ManolisA.Christodoulou,SeniorMember,IEEE,andPetrosA.Ioannou,Fellow,lEEEAbstract-Severalcontinuous-timean

2、ddiscrete-timerecurrenttimerecurrentleamingalgorithm[7],andthedynamicback-neuralnetworkmodelshavebeendevelopedandappliedtopropagation[SI.Thelastapproachisbasedonthecompu-variousengineeringproblems.Oneofthedifficultiesencoun-tationofsensitivitymodelsforgeneralizedneuralnetworks.te

3、redintheapplicationofrecurrentnetworksisthederivationofefficientlearningalgorithmsthatalsoguaranteestabilityofThesegeneralizedneuralnetworks,whichwereoriginallytheoverallsystem.Thispaperstudiestheapproximationandproposedin[9],combinefeedforwardneuralnetworksandlearningpropertieso

4、foneclassofrecurrentnetworks,knowndynamicalcomponentsintheformofstablerationaltransferashigh-orderneuralnetworks,andappliesthesearchitecturesfunctions.totheidentificationofdynamicalsystems.Inrecurrenthigh-Althoughthetrainingmethodsmentionedabovehavebeenorderneuralnetworksthedynam

5、iccomponentsaredistributedthroughoutthenetworkintheformofdynamicneurons.Itissuccessfullyusedinmanyempiricalstudies,theyshareshownthatifenoughhigh-orderconnectionsareallowedthensomefundamentaldrawbacks.Onedrawbackisthefactthisnetworkiscapableofapproximatingarbitrarydynamicalthat,i

6、ngeneral,theyrelyonsometypeofapproximationsystems.Identificationschemesbasedonhigh-ordernetworkforcomputingthepartialderivative.Furthermore,thesearchitecturesaredesignedandanalyzed.trainingmethodsrequireagreatdealofcomputationaltime.Athirddisadvantageistheinabilitytoobtainanalyti

7、calI.INTRODUCTIONresultsconcemingtheconvergenceandstabilityoftheseHEuseofmultilayerneuralnetworksforpattemrecog-schemes.Tnitionandformodelingof“static”systemsiscurrentlyRecently,therehasbeenaconcentratedefforttowardsthewellknown(see,forexample,[11)-givenpairsofinput-outputdesigna

8、ndanalysisofleamingalgorithmsthatarebase

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。