topology & sobolev spaces - brezis

topology & sobolev spaces - brezis

ID:14691067

大小:356.35 KB

页数:45页

时间:2018-07-30

topology & sobolev spaces - brezis_第1页
topology & sobolev spaces - brezis_第2页
topology & sobolev spaces - brezis_第3页
topology & sobolev spaces - brezis_第4页
topology & sobolev spaces - brezis_第5页
资源描述:

《topology & sobolev spaces - brezis》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、TOPOLOGYANDSOBOLEVSPACESHaimBrezis,(1);(2),andYanYanLi,(2)Section0.IntroductionLetMandNbecompact1connectedorientedsmoothRiemannianmanifoldswithorwithoutboundary.ThroughoutthepaperweassumethatdimM2butdimNcouldpossiblybeone,forexampleN=S1isofinterest.OurfunctionalframeworkistheSobolevspaceW1;p(M;N)

2、whichisde nedbyconsideringNassmoothlyembeddedinsomeEuclideanspaceRKandthenW1;p(M;N)=fu2W1;p(M;RK);u(x)2Na:e:g;1;pwith1p<1.W(M;N)isequippedwiththestandardmetricd(u;v)=ku−vkW1;p.OurmainconcernistodeterminewhetherornotW1;p(M;N)ispath-connectedandifnotwhatcanbesaidaboutitspath-connectedcomponents,i.e

3、.itsW1;p-homotopyclasses.WesaythatuandvareW1;p-homotopicifthereisapathut2C([0;1];W1;p(M;N))suchthatu0=uandu1=v.Wedenotebythecorrespondingequivalencerelation.LetdenoteptheequivalencerelationonC0(M;N),i.e.uvifthereisapathut2C([0;1];C0(M;N))suchthatu0=uandu1=v.FirstaneasyresultTheorem0.1.Assumepd

4、imM,thenW1;p(M;N)ispath-connectedifandonlyifC0(M;N)ispath-connected.Theorem0.1isbasicallyknown(andreliesonanideaintroducedbySchoenandUh-lenbeck[SU]whenp=dimM;seealsoBrezisandNirenberg[BN]).OnecanalsodeduceitfromPropositionsA.1,A.2andA.3intheAppendix.Since,ingeneral,C0(M;N)isnotpath-connected,thism

5、eansthatW1;p(M;N)isnotpath-connectedwhenpisarge".Ontheotherhandifpismall",weexpectW1;p(M;N)tobepath-connectedforallMandN.Indeedwehave1SeeRemarkA.1intheAppendixifNisnotcompact.12SECTION0.INTRODUCTIONTheorem0.2.Let1p<2(andrecallthatdimM2).ThenW1;p(M;N)ispath-connected.OurproofofTheorem0.2issurpris

6、inglyinvolvedandrequiresanumberoftechnicaltoolswhicharepresentedinSections1-4.Wecalltheattentionofthereaderespeciallytothebridging"method(seeProposition1.2andProposition3.1)whichisnewtothebestofourknowledge.Remark0.1.Assumption1p<2inTheorem0.2issharp(forgeneralMandN).Forexampleifisanyopenconnec

7、tedset(oraconnectedRiemannianmanifold)ofdimension1,thenW1;2(S1;S1)isnotpath-connected.ThismaybeseenusingtheresultsofB.White[W2]orRubinstein-Sternberg[RS].Thisisalsoaconsequenceoftheresultin[BLMN]whichwerecallf

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。