lecture06 about the n = 4 sym theory

lecture06 about the n = 4 sym theory

ID:14364178

大小:207.32 KB

页数:9页

时间:2018-07-28

lecture06 about the n = 4 sym theory_第1页
lecture06 about the n = 4 sym theory_第2页
lecture06 about the n = 4 sym theory_第3页
lecture06 about the n = 4 sym theory_第4页
lecture06 about the n = 4 sym theory_第5页
资源描述:

《lecture06 about the n = 4 sym theory》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、MITOpenCourseWarehttp://ocw.mit.edu8.821StringTheoryFall2008ForinformationaboutcitingthesematerialsorourTermsofUse,visit:http://ocw.mit.edu/terms.8.821F2008Lecture06:SupersymmetricLagrangiansandBasicChecksofAdS/CFTLecturer:McGreevySeptember24,2008Weareonourwaytotalkingaboutrea

2、llyawesomethingsaboutsupercoolstuff.Beforewegetthere,though,weneedtodevelopsomeverypowerfultechnology.Tothatend,todaywewilltalkabout1.SUSYLagrangiansandawhirlwindtourofthebeautiesofsuperspace.2.moreonN=4SYM.3.BacktotheBigPicture:SomebasicchecksofAdS/CFTLookingpastthislecture,we

3、willbetalkingaboutstringsfromgaugetheorynext.1N=4SYMandOtherSupersymmetricLagrangiansRecallthatthefieldcontentofN=4SYMisavectorAµ,gauginiλI=1...4,andsixscalarsXi,allintheadjointofthegaugegroup.TheLagrangiandensity(whichiscompletelydeterminedbytheamountofSUSY,uptotwoparameters,(

4、gYM,ϑ)),is1��L=trF2+(DXi)2+iλ¯D/λg2YM�6−[Xi,Xj]2−λ[X,λ]+λ¯[X,λ¯]])i

5、rentzspinorandSO(6)vector/spinor,supersymmetry).Ifyouwanttoputtheindicesin,eitherleavethatasafunexercise,orcheckoutWeinberg,volume3.Asanexample,F+≡σµνFµν.1.1ASuperspaceDetourTheN=4SYMLagrangianisanexampleofa(highly)supersymmetricLagrangian.Sofar,Ijusttoldyouwhatitwasandthatitw

6、asSUSYinvariant(somethingyoucouldsitdownintheprivacyofyourofficeandcheck,ifyouwanted).It’dbenice,though,ifthereweresomesortofamachinethatonecouldcranktogeneratesupersymmetriclagrangians.Thatcrankablemachineissuperspace.Tounderstandwhysuperspaceisuseful,weshouldthinkaboutwhyfields

7、areusefulforrepresentingtranslationallyinvariantLagrangiansinordinaryQFT.Onereasonisthattherepresentationsofthetranslationgrouponthefieldsareparticularlysimpleφ(x)=eiPˆ·xφ(0)(3)We’dliketointroduceasuperfield(thatcomeswithitsownsupercapitalization)Φ(x,θ),whichisnowafunctionofspac

8、ecoordinatesxand“superspace”coordinatesθ,thatwellrepresentstr

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。