欢迎来到天天文库
浏览记录
ID:14264673
大小:382.50 KB
页数:10页
时间:2018-07-27
《2013年高考数学(理)一轮复习导学案69》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、学案69 正态分布导学目标:利用实际问题的直方图,了解正态分布曲线的特点及曲线所表示的意义.自主梳理1.正态分布密度曲线及性质(1)正态曲线的定义函数φμ,σ(x)=__________________________(其中实数μ和σ(σ>0)为参数)的图象为正态分布密度曲线.(2)正态分布密度曲线的特点①曲线位于x轴________,与x轴不相交;②曲线是单峰的,它关于直线________对称;③曲线在________处达到峰值____________;④曲线与x轴之间的面积为____;⑤当σ一定时,曲线随着____的变化而沿
2、x轴移动;⑥当μ一定时,曲线的形状由σ确定.σ________,曲线越“高瘦”,表示总体的分布越集中;σ________,曲线越“矮胖”,表示总体的分布越分散.2.正态分布(1)正态分布的定义及表示如果对于任何实数a,b(a
3、4、0.4C.0.3D.0.24.某随机变量ξ服从正态分布,其正态分布密度函数为φ(x)=,则ξ的期望和标准差分别是( )A.0和8B.0和4C.0和D.0和25.(2011·辽宁十校联考)设两个正态分布N(μ1,σ)(σ1>0)和N(μ2,σ)(σ2>0)的密度函数图象如图所示,则有( )A.μ1<μ2,σ1<σ2B.μ1<μ2,σ1>σ2C.μ1>μ2,σ1<σ2D.μ1>μ2,σ1>σ2探究点一 正态曲线的性质例1 如图所示,是一个正态曲线,试根据图象写出其正态分布密度曲线的解析式,并求出正态总体随机变量的均值和方差.变式5、迁移1 若一个正态分布的正态分布密度函数是一个偶函数,且该函数的最大值为.(1)求该正态分布的概率密度函数的解析式;(2)求正态总体在(-4,4]的概率.探究点二 服从正态分布的概率计算例2 设X~N(5,1),求P(66、若这次考试共有2000名考生,试估计考试成绩在(80,100)间的考生大约有多少人?变式迁移3 在某次大型考试中,某班同学的成绩服从正态分布N(80,52),现已知该同学中成绩在80分~85分的有17人.试计算该班成绩在90分以上的同学有多少人?1.正态分布密度曲线,简称正态曲线,其解析式为:φμ,σ(x)=,x∈(-∞,+∞).2.正态曲线的特点:(1)曲线在x轴的上方,与x轴不相交.(2)曲线是单峰的,它关于直线x=μ对称.(3)曲线在x=μ时达到峰值.(4)曲线与x轴之间的面积为1.(5)当σ一定时,曲线随着μ的变化而沿x7、轴平移.(6)当μ一定时,曲线的形状由σ确定.σ越大,曲线越“矮胖”,表示总体的分布越分散;σ越小,曲线越“高瘦”,表示总体的分布越集中.3.3σ原则:从理论上讲,服从正态分布的随机变量ξ的取值范围是R,但实际上ξ取区间(μ-3σ,μ+3σ)外的数值的可能性微乎其微(只有0.26%),在实际问题中常常认为它是不会发生的.因此,往往认为它的取值是个有限区间,即区间(μ-3σ,μ+3σ),这就是实用中的三倍标准差规则,也叫3σ原则.在企业管理中,经常应用这个原则进行产品质量检查和工艺生产过程控制.(满分:75分)一、选择题(每小题58、分,共25分)1.如图是正态分布N(μ,σ),N(μ,σ),N(μ,σ)相应的曲线,则有( )A.σ1>1>σ2>σ3>0B.0<σ1<σ2<1<σ3C.σ1>σ2>1>σ3>0D.0<σ1<σ2=1<σ32.(2011·佛山月考)设随机变量ξ服从正态分布N(
4、0.4C.0.3D.0.24.某随机变量ξ服从正态分布,其正态分布密度函数为φ(x)=,则ξ的期望和标准差分别是( )A.0和8B.0和4C.0和D.0和25.(2011·辽宁十校联考)设两个正态分布N(μ1,σ)(σ1>0)和N(μ2,σ)(σ2>0)的密度函数图象如图所示,则有( )A.μ1<μ2,σ1<σ2B.μ1<μ2,σ1>σ2C.μ1>μ2,σ1<σ2D.μ1>μ2,σ1>σ2探究点一 正态曲线的性质例1 如图所示,是一个正态曲线,试根据图象写出其正态分布密度曲线的解析式,并求出正态总体随机变量的均值和方差.变式
5、迁移1 若一个正态分布的正态分布密度函数是一个偶函数,且该函数的最大值为.(1)求该正态分布的概率密度函数的解析式;(2)求正态总体在(-4,4]的概率.探究点二 服从正态分布的概率计算例2 设X~N(5,1),求P(66、若这次考试共有2000名考生,试估计考试成绩在(80,100)间的考生大约有多少人?变式迁移3 在某次大型考试中,某班同学的成绩服从正态分布N(80,52),现已知该同学中成绩在80分~85分的有17人.试计算该班成绩在90分以上的同学有多少人?1.正态分布密度曲线,简称正态曲线,其解析式为:φμ,σ(x)=,x∈(-∞,+∞).2.正态曲线的特点:(1)曲线在x轴的上方,与x轴不相交.(2)曲线是单峰的,它关于直线x=μ对称.(3)曲线在x=μ时达到峰值.(4)曲线与x轴之间的面积为1.(5)当σ一定时,曲线随着μ的变化而沿x7、轴平移.(6)当μ一定时,曲线的形状由σ确定.σ越大,曲线越“矮胖”,表示总体的分布越分散;σ越小,曲线越“高瘦”,表示总体的分布越集中.3.3σ原则:从理论上讲,服从正态分布的随机变量ξ的取值范围是R,但实际上ξ取区间(μ-3σ,μ+3σ)外的数值的可能性微乎其微(只有0.26%),在实际问题中常常认为它是不会发生的.因此,往往认为它的取值是个有限区间,即区间(μ-3σ,μ+3σ),这就是实用中的三倍标准差规则,也叫3σ原则.在企业管理中,经常应用这个原则进行产品质量检查和工艺生产过程控制.(满分:75分)一、选择题(每小题58、分,共25分)1.如图是正态分布N(μ,σ),N(μ,σ),N(μ,σ)相应的曲线,则有( )A.σ1>1>σ2>σ3>0B.0<σ1<σ2<1<σ3C.σ1>σ2>1>σ3>0D.0<σ1<σ2=1<σ32.(2011·佛山月考)设随机变量ξ服从正态分布N(
6、若这次考试共有2000名考生,试估计考试成绩在(80,100)间的考生大约有多少人?变式迁移3 在某次大型考试中,某班同学的成绩服从正态分布N(80,52),现已知该同学中成绩在80分~85分的有17人.试计算该班成绩在90分以上的同学有多少人?1.正态分布密度曲线,简称正态曲线,其解析式为:φμ,σ(x)=,x∈(-∞,+∞).2.正态曲线的特点:(1)曲线在x轴的上方,与x轴不相交.(2)曲线是单峰的,它关于直线x=μ对称.(3)曲线在x=μ时达到峰值.(4)曲线与x轴之间的面积为1.(5)当σ一定时,曲线随着μ的变化而沿x
7、轴平移.(6)当μ一定时,曲线的形状由σ确定.σ越大,曲线越“矮胖”,表示总体的分布越分散;σ越小,曲线越“高瘦”,表示总体的分布越集中.3.3σ原则:从理论上讲,服从正态分布的随机变量ξ的取值范围是R,但实际上ξ取区间(μ-3σ,μ+3σ)外的数值的可能性微乎其微(只有0.26%),在实际问题中常常认为它是不会发生的.因此,往往认为它的取值是个有限区间,即区间(μ-3σ,μ+3σ),这就是实用中的三倍标准差规则,也叫3σ原则.在企业管理中,经常应用这个原则进行产品质量检查和工艺生产过程控制.(满分:75分)一、选择题(每小题5
8、分,共25分)1.如图是正态分布N(μ,σ),N(μ,σ),N(μ,σ)相应的曲线,则有( )A.σ1>1>σ2>σ3>0B.0<σ1<σ2<1<σ3C.σ1>σ2>1>σ3>0D.0<σ1<σ2=1<σ32.(2011·佛山月考)设随机变量ξ服从正态分布N(
此文档下载收益归作者所有