第八课:征服一般线性模型――general linear model菜单详解(下)

第八课:征服一般线性模型――general linear model菜单详解(下)

ID:11016138

大小:175.00 KB

页数:10页

时间:2018-07-09

第八课:征服一般线性模型――general linear model菜单详解(下)_第1页
第八课:征服一般线性模型――general linear model菜单详解(下)_第2页
第八课:征服一般线性模型――general linear model菜单详解(下)_第3页
第八课:征服一般线性模型――general linear model菜单详解(下)_第4页
第八课:征服一般线性模型――general linear model菜单详解(下)_第5页
资源描述:

《第八课:征服一般线性模型――general linear model菜单详解(下)》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、SPSS第八课:征服一般线性模型――GeneralLinearModel菜单详解(下)(医学统计之星:张文彤) §8.4 多元方差分析所谓的多元方差分析,就是说存在着不止一个应变量,而是两个以上的应变量共同反映了自变量的影响程度。比如要研究某些因素对儿童生长的影响程度,则身高、体重等都可以作为生长程度的测量因子,即都应作为应变量。8.4.1 分析步骤为了方便起见,我们这里直接利用SPSS自带的数据集plastic.sav,假设tear_res、gloss和opacity都使反应橡胶质量的指标(不要笑,是假设),现在要研究extrusn和addi

2、tive对橡胶的质量影响如何,则应采用多元方差分析。选择Analyze==>GeneralLinearModel==>Multivariate,则弹出Multivariate对话框,请注意,除了没有randomeffect外,它的所有元素都是和univariate对话框相同的,里面的内容也相同,因此我们这里就不再重复了。按照我们的分析要求,对话框操作步骤如下:1.Analyze==>GeneralLinealmodel==>Multivariate2.DependentVariable框:选入tear_res、gloss和opacity3.Fi

3、xedFactors框:选入extrusn和additive4.单击OK此处两个自变量均是二分类变量,故无需选择两两比较方法。8.4.2 结果解释按上面的选择,分析结果如下:GeneralLinearModel这是引入模型的自变量的取值情况列表。上表是针对模型中的自变量间及其交互作用所做的检验,采用的是四种多元检验方法。一般他们的结果都是相同的,如果不同,一般以Hotelling'sTrace方法的结果为准。可见在所用的模型中,extrusn和additive对结果变量是有统计学意义的,但交互作用无统计学意义。上表实际上是四个一元方差分析表的合

4、并,即分别考虑四个应变量时的方差分析结果。上面的多元方差分析已经得知两自变量对应变量有影响,从现在的分析表就可以更清楚的知道是对那些自变量影响较大。对照可知,extrusn和additive对tearresistance和gloss都有较大影响,而他们的交互作用对gloss有影响,他们(及交互作用)对Opacity都没有影响。§8.5 重复测量的方差分析重复测量的方差分析指的是一个应变量被重复测量好几次,从而同一个个体的几次观察结果间存在相关,这样就不满足普通分析的要求,需要用重复测量的方差分析模型来解决。8.5.1 Repeatedmeasu

5、res对话框界面说明实际上,如果对普通方差分析模型作出正确的设置,两者的分析结果是完全相同的,即都正确,那么,重复测量的方差分析过程有何优势呢?我们通过下面的例子来看看:例8.3 在数据集anxity2.sav中判断:anxiety和tension对实验结果(即trial1~trial4)有无影响;四次试验间有无差异;试验次数和两个变量有无交互作用。anxity2.sav和anxity.sav实际上是同一个数据,但根据不同的分析目的采用了不同的数据排列方式。如果采用anxity.sav进行分析,我们可以分析四次试验间有无差异的问题,但对另两个问

6、题就无能为力了,因为用普通的方差分析模型,anxity和tension的影响被合并到了subject中,根本就无法分解出来进行分析,这时,我们就只能求助于重复测量的方差分析模型。在菜单中选择Analyze==>GeneralLinealmodel==>Repeatedmeasures,系统首先会弹出一个重复测量因子定义对话框如下:因为是重复测量的模型,应变量被重复测量了几次,分别存放在几个变量中,所以我们这里要自行定义应变量。默认的名称为factor1,我们将其改为trail,下面的因素等级数填入4(因一共测量了四次)。单击Add钮,则该变量被

7、加入,我们就完成了模型设置的第一步:应变量名称和测量次数定义。单击define,我们开始进行下一个步骤:具体重复测量变量定义及模型设置,对话框如下:这个对话框和我们以前看到的方差分析对话框不太一样:它没有应变量框,而是改为了组内效应框,实际上是一回事,上面我们定义了trial有四次测量,此处就给出了四个空让你填入相应代表四次测量的变量,选中trial1~trial4,将其选入;然后要选择自变量了(这里又将其称为了betweensubjectsfactor),将剩下的三个都选入即可。最后,根据题意,不需要检验anxity与tension的交互作用

8、对试验次数有无交互作用,所以要在model中作相应设置,把那个东东拉出来。详细的操作步骤如下:1.Analyze==>GeneralLinealmod

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。