欢迎来到天天文库
浏览记录
ID:10590773
大小:27.00 KB
页数:5页
时间:2018-07-07
《如何对待学生解题中错误》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、如何对待学生解题中错误初中数学相对于小学数学,对学生的要求有较大幅提高,出现错误是难免的。因此,对初中学生数学解题中的常见错误进行系统的分析十分重要。首先教师可以通过错误来发现学生的不足,从而采取相应的补救措施;其次,错误从一个特定的角度揭示了学生掌握知识的过程;最后,错误对于学生来说也是不可或缺的,是学生在学习过程中对所学知识不断尝试的结果。本文就初中学生数学解题错误作一简要分析。1.正视学生解题的错误在数学教学过程中,由于各种原因教师总是害怕学生出现解题错误,对学生解题的错误经常采取严厉禁止的态度。在对付
2、应试教育的情况下,课堂教学只注重教给学生正确的结论,忽视揭示知识形成的过程。长此以往,学生只能机械地接受正确的知识,一旦出现错误就不知所措,看不出错误或看出错误但改不对,有时一道看起来很简单的题目要改四五遍。持这种态度的教师只关心学生用对知识,而忽视学生会用知识。例如,在讲有理数运算时,由于只注重得出正确的结果,强调运算法则、运算顺序,而对运用运算律简化运算注意不够,但后者对发展学生运算能力却更为重要。5事实上,错误是正确的先导,成功的开始。学生所犯错误及其对错误的认识,是学生获得和巩固知识的重要途径。笔者至
3、今仍然对一节数学课记忆犹新。当时老师讲过a2-b2=(a+b)(a-b)后,让学生自己分解x4-y4。很快大家就做完了。老师一边巡视一边督促检查。但在最后老师宣布只有1人做对时,学生都感到非常吃惊。x4-y4分解为(x2+y2)(x2-y2)错在哪里呢?做对同学的答案是(x2+y2)(x+y)(x-y),两相对照,学生发现原来x2-y2还可以继续分解。于是,分解因式要进行到每个因式都不能再分解为止,给每个同学都留下了深刻的印象。由此也可以看出,利用学生典型错误并进行正确诱导会收到良
4、好的教学效果。基于上述原因,教师对待错误的惧怕心理和严厉态度转变为承受心理和宽容态度是十分有意义的。错误不过是学生在数学学习过程中所做的某种尝试,它只能反映学生在数学学习的某个阶段的水平,而不能代表其最终的实际水平。揭示错误是为了最后消灭错误,我们所说的承受与宽容也是相对于这一过程而言的。教师具备这样的承受心理与宽容态度,才会耐心寻找学生解题错误的原因,并做出适当的处理。2.学生解题错误的原因5学生顺利正确地完成解题,表明其在分析问题,提取、运用相应知识的环节上没有受到干扰或者说克服了干扰。在上述环节上不能排
5、除干扰,就会出现解题错误。就初中学生解题错误而言,造成错误的干扰主要来自以下三方面:一是概念的内涵和外延的干扰,二是小学数学的干扰,三是初中新旧知识的干扰。2.1概念的内涵与外延的干扰。有些同学能把概念背的滚瓜烂熟,却没有真正理解其含义,没有抓住其本质,运用起来易出错。例如有的同学解释不出为什么“三角形任何两边之和大于第三边,任何两边之差小于第三边”是因为对“两点之间线段最短”理解不深,把握不透。学习有阶段性,不可急于求成,不然会事倍功半。如在学习“绝对值”这个概念时,只要求掌握正数,负数,零的绝对值是什么,
6、就可以了,不要急于提高深化,设计做如下的练习:若
7、m-1
8、>m-1,则m1。这个问题要等到对绝对值概念完全掌握了后方可着手做。我们教师应该引导学生注重知识的学习和掌握过程。2.2小学数学的干扰。在初中一开始,学生学习小学数学形成的某些认识会妨碍他们学习代数初步知识,使其产生解题错误。例如,小学数学中形成的一些结论都只是在没有学负数的情况下成5立的。在小学,学生对两数之和不小于其中任何一个加数,即a+b≥a是坚信不疑的。但是,学了负数后,a+b<a也是可能的。也就是说,习惯于在非负数范围内讨论问题,容易忽视字母
9、取负数的情况,导致解题错误。对习惯看法的印象越牢固,新的看法就越难牢固树立。又如,在小学数学中,解题结果常常是一个确定的数。受此影响,学生在解答下述问题时出现混乱与错误。原题是这样的:礼堂第一排有a个座位,后面每排都比前1排多1个座位,第2排有几个座位?第3排呢?用m表示第n排的座位数,m是多少?当a=20,n=19时,计算m的值。学生在解答上述问题时,受结果是确定的数的影响,把用n表示m与求m的值混为一谈,暴露出其思考过程受到上述干扰的痕迹。再有,学生习惯于算术解法解应用题,这会对学生学习代数方法列方程解应
10、用题产生干扰。例如,在求两车相遇时间(甲、乙两站间的路程为480km,一列慢车从甲站开出,每小时行驶46km,一列快车从乙站开出,每小时行驶74km,两列火车同时开出,相向而行,经过多少小时相遇?),列出的“方程”为。由此可以看出学生拘泥于算术解法的痕迹。而初中需要列出46x+74x=480这样的方程,这表明学生对已知数和未知数之间的相等关系的把握程度。总之,初中开始阶段,学生解题错误的原因常可追溯
此文档下载收益归作者所有