欢迎来到天天文库
浏览记录
ID:9973485
大小:7.72 MB
页数:8页
时间:2018-05-17
《sus304不锈钢高温力学性能的物理模拟》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、304不锈钢高温力学性能的物理模拟关小霞田建军杨健指导教师:杨庆祥胡宏彦博士燕山大学材料科学与工程学院摘要:采用Gleeble-3500热模拟试验机对304不锈钢的高温力学性能进行了物理模拟。对模拟结果中应力-应变曲线进行分析,并结合断口附近组织形貌的观察,得出结论:金属的极限应力随温度升高呈下降趋势;在δ-Fe向γ-Fe转变的某一温度,金属塑性急剧下降;对断口附近金相组织及SEM分析,推测晶界处可能存在着元素偏聚或析出相现象。关键词:304不锈钢;力学性能;物理模拟1.前言:双辊铸轧不锈钢薄带技术是目前冶金及材料领域的前沿技术之一[1],
2、是直接用钢水制成2-5mm厚薄带的工艺过程。该技术可以大大简化薄带钢的生产流程,降低生产成本,并形成低偏析、超细化的凝固组织,从而使带材具有良好的性能,被公认为钢铁工业的革命性技术[2、3]。但是,不锈钢经铸轧后,薄带表面会形成宏观的裂纹,从而降低不锈钢薄带的力学性能,影响其质量[4-6]。国内外在双辊铸轧不锈钢薄带技术上已经开展了一些研究工作。文献[7]对比了铸轧铁素体和奥氏体不锈钢薄带;文献[8、9]对铸轧304不锈钢薄带过程中高温铁素体的溶解动力学进行了研究;文献[10]对不锈钢薄带铸轧过程中凝固热参数和组织进行了研究;文献[11-1
3、4]对不锈钢薄带铸轧过程中的流场和温度场进行了数值模拟;文献[15]对铸轧304不锈钢薄带的力学性能进行了研究。文献[16]对304不锈钢在加热过程中的高温铁素体形核与长大和夹杂物在固-液界面的聚集进行了原位观察;文献[17]对薄带铸轧溶池液面进行了物理模拟;文献[18]对铸轧不锈钢薄带过程的凝固组织、流场、温度场及热应力场进行了数值模拟。但是,缺少对铸轧不锈钢薄带表面与内部裂纹的生成机理、演变规律以及预防措施方面的研究。在高温性能物理模拟方面,国内外也有不少研究。文献[19]应用THERMECMASTOR-Z热加工模拟机对奥氏体不锈钢的高
4、温热变形进行了模拟试验;文献[20]利用Gleeble-1500试验机对铸态奥氏体不锈钢在1000-1200℃温度区间进行了热压缩试验;文献[21]从位错理论角度出发,对高钼不锈钢热加工特征与综合流变应力模型进行了研究。但是,对铸轧不锈钢薄带高温力学性能的物理模拟方面的研究却极少。为此,本项目前期工作对实际双辊铸轧生产过程中的薄带裂纹进行了研究,阐明了双辊铸轧不锈钢薄带表面与内部裂纹的生成机理。在此基础上,本阶段研究工作拟采用物理模拟的方法研究304不锈钢的高温力学性能,揭示双辊铸轧不锈钢薄带裂纹的演变规律。2.试验方法:采用Gleeble
5、-3500热模拟试验机进行高温力学性能的物理。试样为Φ10×125mm圆柱试样,采用凝固法,先将试样以10℃/s的速度加热至1330℃,保温2min,然后以20℃/s的速度冷却到固相线以下规定的拉伸温度,在恒温下以1×10-3/s的拉伸速率进行拉伸变形。测得304不锈钢在不同变形温度下的应力-应变曲线。制作金相和扫描试样,进行金相观察和SEM观察,对断口附近组织进行进一步观察研究。3.实验结果及分析3.1304不锈钢高温应力-应变曲线分析本试验在Gleeble3500热模拟试验机上,测得了304不锈钢在不同温度下的应力-应变关系曲线。图3-
6、1为热模拟试样拉伸断口的宏观形貌,从图中可以看出拉伸温度为1150℃和1200℃的试样断口处出现了明显的颈缩,断面收缩率较大,属于延性断裂;其余试样在拉伸过程中几乎没发生塑性变形,断面收缩率很小,属于脆性断裂。即温度为1150℃-1200℃范围内塑性较好。700℃800℃900℃1000℃1100℃1150℃1200℃1250℃1300℃1330℃图3-1304不锈钢拉伸断口的宏观形貌(a)(b)(c)(d)(e)(f)(g)(h)图3-2304不锈钢在不同温度下拉伸的应力-应变曲线(a)700℃(b)800℃(c)900℃(d)1000℃
7、(e)1100(f)1150℃(g)1200℃(h)1300℃图3-2为304不锈钢在不同温度下拉伸的应力-应变曲线。对比这几组曲线可以看出,随着温度的升高,曲线在达到极限应力后越来越平缓。304不锈钢变形抗力与形变温度有一定关系,形变温度愈低,变形抗力愈大。温度在700℃至1300℃两者间时,以700℃时的变形抗力最大,随着应变增大,拉伸应力不断增大达到临界值后急剧下降,直到试样断裂;拉伸温度为1150℃和1200℃的试样,在拉伸应力达到最大值后,随应变增加变化不大,对比图3-1发现此时材料塑性较好。变形抗力随形变温度升高而降低的主要原因
8、是奥氏体强度随温度升高而降低,因而温度愈高,变形愈容易;反之,形变温度愈低,变形愈困难,变形抗力愈大。高温时塑性迅速下降是由于当温度达到δ-Fe向γ-Fe转变温度时,晶体由体心立
此文档下载收益归作者所有