欢迎来到天天文库
浏览记录
ID:9970289
大小:142.50 KB
页数:3页
时间:2018-05-17
《计算力学复习题答案》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、计算力学试题答案1.有限单元法和经典Ritz法的主要区别是什么?答:经典Ritz法是在整个区域内假设未知函数,适用于边界几何形状简单的情形;有限单元法是将整个区域离散,分散成若干个单元,在单元上假设未知函数。有限单元法是单元一级的Ritz法。2、单元刚度矩阵和整体刚度矩阵各有什么特征?刚度矩阵[K]奇异有何物理意义?在求解问题时如何消除奇异性?答:单元刚度矩阵的特征:⑴对称性⑵奇异性⑶主元恒正⑷平面图形相似、弹性矩阵D、厚度t相同的单元,相同⑸的分块子矩阵按结点号排列,每一子矩阵代表一个结点,占两行两列,其位置与结点位置对应。
2、整体刚度矩阵的特征:⑴对称性⑵奇异性⑶主元恒正⑷稀疏性⑸非零元素呈带状分布。的物理意义是任意给定结构的结点位移所得到的结构结点力总体上满足力和力矩的平衡。为消除的奇异性,需要引入边界条件,至少需给出能限制刚体位移的约束条件。4.何为等参数单元?为什么要引入等参数单元?答:等参变换是对单元的几何形状和单元内的场函数采用相同数目的结点参数及相同的插值函数进行变换,采用等参变换的单元称之为等参数单元。借助于等参数单元可以对于一般的任意几何形状的工程问题和物理问题方便地进行有限元离散,其优点有:对单元形状的适应性强;单元特性矩阵的积分
3、求解方便(积分限标准化);便于编制通用化程序。5、对于平面4节点(线性)和8节点(二次)矩形单元,为了得到精确的刚度矩阵,需要多少个Gauss积分点?说明理由。答:对于平面4节点(线性)矩形单元:所以因而积分点数为:矩阵对于平面8节点(二次)矩形单元:所以因而积分点数为:矩阵⑴矩形、正方形、平行四边形2、总刚度矩阵[K]的任一元素kij的物理意义是什么?如何解释总刚度矩阵的奇异性和带状稀疏性?答:K中元素的物理意义:当结构的第个结点位移方向上发生单位位移,而其它结点位移方向上位移为零时,需在第个结点位移方向上施加的结点力大小。
4、奇异性:=0,力学意义是对任意给定结点位移所得到结构结点力总体上是满足力和力矩的平衡。反之,给定任意满足力和力矩平衡结点载荷P,由于K的奇异性却不能解得结构的位移,因而结构仍可能发生任意的刚体位移。为消除的奇异性,结构至少需给出能限制刚体位移的约束条件。带状稀疏性:由于连续体离散为有限个单元体时,每个结点的相关单元只是围绕在该结点周围为数甚少的几个,一个结点通过相关单元与之发生关系的相关结点也只是它周围的少数几个,因此虽然总体单元数和结点数很多,结构刚度矩阵的阶数很高,但刚度系数中非零系数却很少,即为总刚度矩阵的稀疏性。另外,
5、只要结点编号是合理的,这些稀疏的非零元素将集中在以主对角线为中心的一条带状区域内,即为总刚度矩阵的带状分布特性。3、以3节点三角形单元为例证明插值函数特性,n为节点数。答:图形见课本P105图3.6由面积坐标:插值函数:所以4、什么是等参单元?等参单元的收敛性如何?答:等参变换是对单元的几何形状和单元内的场函数采用相同数目的结点参数及相同的插值函数进行变换,采用等参变换的单元称之为等参元。等参单元满足收敛性需满足两个条件:即单元必须是协调的和完备的。完备性条件:要求插值函数中包含完全的线性项(包含常数项和一次项)。协调性条件:
6、单元边界上位移连续,相邻单元边界具有相同的结点,每一单元沿边界的坐标和未知函数采用相同的插值函数。5、对于空间8节点(线性)和20节点(二次)六面体单元,为了得到精确的刚度矩阵,需要多少个Gauss积分点?说明理由。答:对于空间8节点(线性)六面体单元:所以因而积分点数为:矩阵对于空间20节点(二次)六面体单元:所以因而积分点数为:矩阵1、为什么说3节点三角形单元是常应变单元?答:常应变单元指的是在一个单元内的应变为常数,有限元中的常应变单元指的是线性三角形单元,线性三角形单元的位移场为线性的,应变为位移的一阶导数,故为常数,
7、因此称为常应变单元。3、何为等参变换?等参元有那些优点?答:等参变换是对单元的几何形状和单元内的场函数采用相同数目的结点参数及相同的插值函数进行变换,采用等参变换的单元称之为等参元。借助于等参元可以对于一般的任意几何形状的工程问题和物理问题方便地进行有限元离散,其优点有:对单元形状的适应性强;单元特性矩阵的积分求解方便(积分限标准化);便于编制通用化程序。结构离散化将连续体划分为若干小“单元”的集合。在相邻单元的边界上应满足一定的连续条件。单元内部的物理量可以用单元“节点”处的相关物理量来表示。节点处的这些物理量统称为"自由度
8、",其所代表的实际物理量如:节点位移、转角、温度、热流、电压、电流、磁通量、流速、流量等。单元节点的设置、自由度性质、数目等应视问题的性质,所描述物理量的变化形态的需要和计算精度而定。然后,将各单元的节点物理量按一定方式组合到一起以代表整个结构。这样处理后,整个结构上的微分方
此文档下载收益归作者所有