关于高职高专高等数学教学改革的几点思考

关于高职高专高等数学教学改革的几点思考

ID:9888906

大小:48.00 KB

页数:4页

时间:2018-05-13

关于高职高专高等数学教学改革的几点思考_第1页
关于高职高专高等数学教学改革的几点思考_第2页
关于高职高专高等数学教学改革的几点思考_第3页
关于高职高专高等数学教学改革的几点思考_第4页
资源描述:

《关于高职高专高等数学教学改革的几点思考》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、关于高职高专高等数学教学改革的几点思考陈晓敏摘要:高等数学是高职高专学生必修的一门基础课,针对高职高专学生的特点和学校的培养目标以及如今在高职院校数学教学中教师和学生都存在的一些困惑,根据作者在高数教学改革中的经验和教训,从以下五个方面:高等数学在高职教育中的定位和作用;与初等数学的衔接;与专业的衔接,注重理论联系实际;数学建模,数学软件的应用;改革教学方法,构筑师生互动的平台,提出了一些思考和建议。关键词:高等数学;高职高专教学改革;教学模式;数学思想随着我国高等教育的快速发展和全民素质的不断提高,高等职业教育迎来了空前的发展机遇,学校

2、数量增加,招生规模扩大。但随之而来的一个问题是入学新生数学总体水平明显下降,层次参次不齐,高等数学的教学现状堪忧。高等数学的开设难以达到预期效果,难以满足学生各专业学科的需要及学生实践对数学的需要,难以起到数学的基础性作用。如何在高职高专的高等数学教育中,充分体现数学的工具性作用,培养学生逻辑思维能力,观察问题、归纳问题并解决实际问题的能力,值得我们数学教师不断探索。一、准确把握高等数学在高职教育中的定位和作用高等职业教育作为我国高等教育的一种类型,其培养目标与普通本科院校有所不同,它既是高等教育又是职业教育,既具有一般高等教育的共性,又

3、具有鲜明的高职教育特色。高等数学课程是高职高专院校一门重要的基础工具课,是学生学习后续专业课程的基础,它为学生后续课程的学习提供必要的数学知识和数学方法,具有较强的工具性和实用性。同时,数学作为一种思维模式,一种文化,一种素质,会使人终身受益。数学作为学生学习知识、积累知识、应用知识、提高能力与素质的载体,对全面提高学生的综合素质具有不可替代的作用。而长期以来,高职高专数学教学内容基本上是本科数学教学的压缩型,教学模型和教学方法也基本上是沿袭或借鉴本科的。培养目标和任务的不同,要求高职高专数学教学应具有鲜明的高职特色,而不是抄、搬本科的教

4、学模式。根据高职院校的培养目标和学生的特点,高职高专数学教学的任务,一方面是为专业学习提供必需的数学基础,另一方面是提高学生的文化素养和提供就业上岗后满足岗位职责所需要的数学基础。通过高等数学的教学达到以下目标:让学生掌握微积分的基本理论与基本运算;掌握学习后续课程必需的数学基本知识;具有基本的运算能力和初步运用数学软件的能力;初步掌握数学建模思想,能运用数学知识解决简单的实际问题;初步形成以“数学方式”思考问题、解决问题的能力。二、在高职数学教学中,注意学生特点,注意与初等数学的衔接当前,高职院校学生数学入学水平有明显下降,加上高职院校

5、以培养技术应用型人才为目标,重视实践环节和学生技能的培养,高等数学的教学时数又有所减少。高等数学知识深奥、概念抽象,历来被视为一门难学的学科。对于高职高专学生,如果按传统、经典的内容,一板一眼地组织高等数学教学,势必会让高职高专的学生感到枯燥、抽象、困难,从而挫伤学生学习数学的信心与兴趣。为加强教学针对性,应尽量降低难度,突出数学思想,将数学知识以通俗、直观、具体、生动活泼的形式展现出来,引导学生学好数学。目前高中数学已讲到函数、连续、极限、求导及导数的应用。所以,在我们高等数学的教学中不能是简单的重复和加深,而是要注重这些数学知识的来源

6、及应用。为此,在高数教学中必须打破传统的课程界限与内容体系,构建富有针对性、适用性的教学内容。注重理论与实践的结合,淡化抽象的数学定义,采用描述性的定义,深入浅出讲清数学定义、定理。多给学生运用数学思想观察问题,分析问题,解决问题的例子和学生思考的机会。如在分段函数的介绍中,举例出租车收费问题:出租车收费是路程的函数,起价是9元,7公里以内每公里1.4元,7公里以上加上返空费每公里2.7元。让学生列出乘坐出租车的费用函数,并提问:该函数在分段点处是否连续?作为乘客为避免返空费有无必要换乘出租车?出租车公司为什么要把7公里以上的返空费定为2

7、.7元,而不定为其它?同时介绍函数连续的概念,当时可以以速度是时间的连续函数为例,启发学生用连续函数的特点解释车速太快易发生车祸的内在原因;在导数定义中给学生讲解高速公路上测速器的工作原理;在介绍定积分定义时,讲解我国隋代建造的跨度达37米的大石桥——赵州桥,它是用一条条长方形条石砌成,一段段直的条石却砌成了一整条弧形曲线的拱圈,这也就是微积分中“以曲代直,以常代变”基本思想的生动原型。让学生深刻理解数学定义的精髓,明白“枯燥抽象”的数学并不是空穴来风,它来源于实践,并且与日常生活、工程实践紧密相关。在数学教学中通过引导学生有意识地用数学

8、的眼光去注意事物之间的数学现象,探索事物之间的数量关系,逐步形成学生的数学气质,从而培养学生对事物的浓厚的好奇心,对问题的敏锐感,强烈的探究愿望和坚持性,敢于质疑问难,挑战未来的勇气。这正是具

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。