200mw汽轮机deh数字电液调节系统应用分析

200mw汽轮机deh数字电液调节系统应用分析

ID:9662501

大小:50.50 KB

页数:3页

时间:2018-05-05

200mw汽轮机deh数字电液调节系统应用分析_第1页
200mw汽轮机deh数字电液调节系统应用分析_第2页
200mw汽轮机deh数字电液调节系统应用分析_第3页
资源描述:

《200mw汽轮机deh数字电液调节系统应用分析》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、200MW汽轮机DEH数字电液调节系统应用分析  六台汽轮机组原来采用的都是液压调节系统,它在快速性、可靠性、精确性等方面都存在着不少问题,大多采用液压调节系统的200Min。  2、DEH---ⅢA电液调节系统为多回路,多变量调节系统,综合运算能力强,具有较强的适应外界负荷变化和抗内扰能力,可方便地实现机炉协调控制,有利于电网的稳定运行。  3、DEH---ⅢA电液调节系统,能使汽轮机的转速或功率的实际值准确地等于给定值,静态特性良好。机组甩负荷时,由于功率回路的切除可以防止反调,使汽轮机的转速迅速稳定在3000r/min上。电液调节系统的动

2、态飞升转速较液压调节系统减少一个速度变动率值,所以其动态振荡少,飞升转速低,动态特性很好。就我厂改造了DEH系统的机组而言,从发生的几次发电机甩负荷掉闸事件来看,机组的动态飞升转速均在3140rpm以下,这说明DEH改造后可以有效地抑制机组的动态飞升。  4、DEH---ⅢA电液调节系统可提供调频、带基本负荷、定汽压、定功率和机炉协调等多种运行方式。而液压调节系统在这方面却受到了很大的限制,这就使机组的工况适应性大大提高。。  5、利用计算机可方便地实现厂级集中控制和远方遥调控制,可在线修改各种调节参数,有利于自动化水平的提高。  6、可以降低

3、热耗,提高机组的经济性。DEH改造后,新增阀门管理功能,在启动过程中及低负荷工况下,可以实现全周进汽,以便于机组暖体或减少金属热应力;在大负荷运行时,可以实现喷嘴调节方式,以减少不必要的节流损失;此外,DEH还具有电子凸轮效应,使阀门的开启更加线性化;能够合理地设置调速汽门的重叠度,提高了机组的热经济性。  7、由于DEH---ⅢA控制系统的硬件采用积木式结构,系统扩展灵活,维护测试方便,也便于采用冗余控制手段与保护措施。四、机组改造后的运行情况:  该厂五台汽轮机已进行了DEH改造,经过多次开停机及长周期运行考验,使用情况良好,在机组启动升速

4、、跨越临界转速、超速试验、并网升降负荷、变工况运行、抗扰动能力以及主调门活动等试验方面,都显示了液压调节系统无可比拟的优越性,且具有在线检修维护、调试方便快捷等优点,达到了良好的预期效果。但使用中也暴露了一些问题,现概括如下:  1、DEH系统卡件故障。改造后的#3机组,在运行中进行#2中压主汽门活动试验时,曾三次出现机组跳闸现象,通过对现象和历史数据的分析,发现汽轮机的危急遮断系统ETS和DEH并未发出跳闸停机的指令。ETS与DEH保护的逻辑关系为:ETS中发出任一停机指令后(ETS保护项目包括:凝汽器真空低、轴向位移大、润滑油压低、发电机故

5、障、电超速和EH油压低),解脱滑阀动作的同时,又通过硬接线把停机指令发送到DEH中的危急遮断系统,使AST电磁阀失电停机;DEH发生电源丧失或机组转速达到额定转速的110%时,AST电磁阀动作的同时,也通过硬接线发送到ETS,使解脱滑阀动作停机。  其中ETS中的“EH油压低停机”保护所取信号较为特殊,该油压低信号是由四个压力开关按图一所示逻辑在DEH内形成的,并通过LC端子板的DO通道送给ETS。  由#3机跳闸时的历史数据显示:当时EH油压正常,4个LP压力开关均未动作,但ETS的记录却显示接收到了“EH油压低”信号。所以推断LC端子板的D

6、O通道瞬间误动,发出了“EH油压低”的虚假信号。在#3机停机小修期间,把油压低信号改在了DO板的DO通道输出。DO板的DO通道比较可靠,没有发现坏通道,小修结束后至今,经多次做主汽门的活动试验,均未发生异常。现在虽然解决了LC板DO通道误动带来的不良影响,但是我们认为最根本的解决办法,还是直接把四个EH油压低压力开关的输出送到ETS(在以后进行改造的#6机DEH即是如此),由ETS直接判断EH油压是否降低,以增加机组的安全性。2、机组运行期间,多次出现调门晃动现象。其特征是:调速汽门的开度指令保持不变,而调速汽门的开关程度忽大忽小、反复振荡,造

7、成负荷随之波动,相应的EH油管剧烈晃动,给机组的安全运行带来了较大的威胁。经观察分析,引起调速汽门晃动的原因主要有以下几个方面:(1)、位移传感器LVDT故障,反馈信号失真,主要表现在航空插头松动、脱落,LVDT线圈开路或短路,LVDT接长杆松动;(2)、伺服阀指令线松动,导致伺服阀频繁动作;(3)、调速汽门重叠度设置不合理;(4)、阀门控制VCC卡内部的两路LVDT频率接近,造成振荡;(5)、VCC卡内部的增益设置不合理。针对以上原因,可采取的处理方法如下:(1)、造成LVDT故障的主要原因之一是安装不当,安装时只能靠目测确定安装位置,没有合

8、适的仪器来校准。处理故障时可拧紧接线螺丝,将故障的一支LVDT拆除,若两路都故障,必须在线更换。在线更换时,必须先退出协调运行,可投入功率回路,视情况

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。