河南省鹤壁高中高二数学第二次月考试题 文

河南省鹤壁高中高二数学第二次月考试题 文

ID:9606906

大小:435.82 KB

页数:7页

时间:2018-05-03

河南省鹤壁高中高二数学第二次月考试题 文_第1页
河南省鹤壁高中高二数学第二次月考试题 文_第2页
河南省鹤壁高中高二数学第二次月考试题 文_第3页
河南省鹤壁高中高二数学第二次月考试题 文_第4页
河南省鹤壁高中高二数学第二次月考试题 文_第5页
资源描述:

《河南省鹤壁高中高二数学第二次月考试题 文》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、河南省鹤壁高中-高二第二次月考数学文试题一、选择题(每题5分,共60分)1.一个命题与他们的逆命题、否命题、逆否命题这4个命题中()A.真命题与假命题的个数相同B.真命题的个数一定是奇数C.真命题的个数一定是偶数D.真命题的个数可能是奇数,也可能是偶数2.“若x≠a且x≠b,则x2-(a+b)x+ab≠0”的否命题()A.若x=a且x=b,则x2-(a+b)x+ab=0B.若x=a或x=b,则x2-(a+b)x+ab≠0C.若x=a且x=b,则x2-(a+b)x+ab≠0D.若x=a或x=b,则x2-(a+b)x+ab=03.在下

2、列结论中,正确的是()①为真是为真的充分不必要条件②为假是为真的充分不必要条件③为真是为假的必要不充分条件④为真是为假的必要不充分条件A.①②B.①③C.②④D.③④4.在△中,“”是“”的________条件()A.充分不必要B.必要不充分C.充要D.既不充分也不必要5.以椭圆的焦点为顶点,离心率为的双曲线标准方程()A.B.C.或D.以上都不对6.动点到点及点的距离之差为,则点的轨迹是()A.双曲线B.双曲线的一支C.两条射线D.一条射线7.抛物线的准线方程是()A.B.C.D.8.过双曲线的一个焦点作垂直于实轴的弦,是另一焦

3、点,若∠,则双曲线的离心率等于()A.B.C.D.9.已知方程表示焦点在y轴上的椭圆,则m的取值范围是()A.m<2B.1

4、PF1

5、=3

6、PF2

7、,则双曲线离心率的取值范围为()A.(1,2)B.C.(3,+)D.椭圆12.上有n个不同的点:P1,P2,…,Pn,椭圆的右焦点为F,数列{

8、PnF

9、}是公差大于的等差数列,则n的最大值是()A.198B.199C.D

10、.二、填空题(每道题5分,共16分)13.若“或”是假命题,则的范围是___________14.已知是不同的两个平面,直线,命题无公共点;命题,则的条件。15.双曲线的一条渐近线方程为,则双曲线的离心率为_____16.椭圆以点P(4,2)为中点的弦的方程是_________________三、解答题(第17题10分,第18-22题每题12分,共70分)17.是否存在实数p,使4x+p<0是的充分条件?如果存在,求出p的取值范围;否则,说明理由.18.命题方程有两个不等的正实数根,命题方程无实数根。若“或”为真命题,求的取值范围

11、.19.代表实数,讨论方程所表示的曲线已知顶点在原点,焦点在轴上的抛物线被直线截得的弦长为,求抛物线的方程。21.如图,倾斜角为a的直线经过抛物线的焦点F,且与抛物线交于A、B两点.(Ⅰ)求抛物线的焦点F的坐标及准线l的方程;A(Ⅱ)若a为锐角,作线段AB的垂直平分线m交x轴于点P,证明

12、FP

13、-

14、FP

15、cos2a为定值,并求此定值。22.已知圆C1的方程为(x-2)2+(y-1)2=,椭圆C2的方程为,C2的离心率为,如果C1与C2相交于A、B两点,且线段AB恰为圆C1的直径,试求:(I)直线AB的方程;(II)椭圆C2的方程.

16、文科数学答案18.解:“或”为真命题,则为真命题,或为真命题当为真命题时,则,得;当为真命题时,则19.解:当时,曲线为焦点在轴的双曲线;当时,曲线为两条平行的垂直于轴的直线;当时,曲线为焦点在轴的椭圆;当时,曲线为一个圆;当时,曲线为焦点在轴的椭圆。:设抛物线的方程为,则消去得,则21.(Ⅰ)解:设抛物线的标准方程为,则,从而因此焦点的坐标为(2,0).又准线方程的一般式为。从而所求准线l的方程为。(Ⅱ)解法一:如图作AC⊥l,BD⊥l,垂足为C、D,则由抛物线的定义知

17、FA

18、=

19、FC

20、,

21、FB

22、=

23、BD

24、.记A、B的横坐标分别

25、为xxxz,则

26、FA

27、=

28、AC

29、=解得,类似地有,解得。记直线m与AB的交点为E,则所以。故。解法二:设,,直线AB的斜率为,则直线方程为。将此式代入,得,故。记直线m与AB的交点为,则,,故直线m的方程为.令y=0,得P的横坐标故。从而为定值.22.(I)由e=,得=,a2=2c2,b2=c2。设椭圆方程为+=1。又设A(x1,y1),B(x2,y2)。由圆心为(2,1),得x1+x2=4,y1+y2=2。又+=1,+=1,两式相减,得+=0。∴∴直线AB的方程为y-1=-(x-2),即y=-x+3。(II)将y=-x+3代入+

30、=1,得3x2-12x+18-2b2=0又直线AB与椭圆C2相交,∴Δ=24b2-72>0。由

31、AB

32、=

33、x1-x2

34、==,得·=。解得b2=8,故所求椭圆方程为+=1

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。