高考数学(江苏卷)试题及答案

ID:9594088

大小:545.09 KB

页数:8页

时间:2018-05-03

高考数学(江苏卷)试题及答案_第1页
高考数学(江苏卷)试题及答案_第2页
高考数学(江苏卷)试题及答案_第3页
高考数学(江苏卷)试题及答案_第4页
高考数学(江苏卷)试题及答案_第5页
资源描述:

《高考数学(江苏卷)试题及答案》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、高考数学江苏卷试题及答案源头学子小屋一选择题:本大题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题意要求的1.设集合,,,则=()A.B.C.D.2.函数的反函数的解析表达式为()A.B.C.D.3.在各项都为正数的等比数列中,首项,前三项和为21,则=()A.33B.72C.84D.1894.在正三棱柱中,若AB=2,则点A到平面的距离为()A.B.C.D.5.中,,BC=3,则的周长为()A.B.C.D.6.抛物线上的一点M到焦点的距离为1,则点M的纵坐标是()A

2、.B.C.D.07.在一次歌手大奖赛上,七位评委为歌手打出的分数如下:,去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为()A.B.C.D.8.设为两两不重合的平面,为两两不重合的直线,给出下列四个命题:①若,,则;②若,,,,则;③若,,则;④若,,,,则其中真命题的个数是()A.1B.2C.3D.49.设,则的展开式中的系数不可能是()A.10B.40C.50D.8010.若,则=()A.B.C.D.11.点在椭圆的左准线上,过点P且方向为的光线经直线反射后通过椭圆的左焦点,则这个

3、椭圆的离心率为()A.B.C.D.12.四棱锥的8条棱代表8种不同的化工产品,有公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共顶点的两条棱所代表的化工产品放在同一仓库是安全的,现打算用编号为①.②.③.④的4个仓库存放这8种化工产品,那么安全存放的不同方法种数为()A.96B.48C.24D.0二.填写题:本大题共6小题,每小题4分,共24分把答案填在答题卡相应位置13.命题“若,则”的否命题为__________14.曲线在点处的切线方程是__________15.函数的定义域为_

4、_________16.若,,则=__________17.已知为常数,若,,则=__________18.在中,O为中线AM上一个动点,若AM=2,则的最小值是__________三.解答题:本大题共5小题,共66分解答应写出文字说明.证明过程或演算步骤19.(本小题满分12分)如图,圆与圆的半径都是1,,过动点P分别作圆.圆的切线PM、PN(M.N分别为切点),使得试建立适当的坐标系,并求动点P的轨迹方程本小题满分12分,每小问满分4分)甲.乙两人各射击一次,击中目标的概率分别是和假设两人射

5、击是否击中目标,相互之间没有影响;每人各次射击是否击中目标,相互之间也没有影响⑴求甲射击4次,至少1次未击中目标的概率;⑵求两人各射击4次,甲恰好击中目标2次且乙恰好击中目标3次的概率;⑶假设某人连续2次未击中目标,则停止射击问:乙恰好射击5次后,被中止射击的概率是多少?21.(本小题满分14分,第一小问满分6分,第二.第三小问满分各4分)如图,在五棱锥S—ABCDE中,SA⊥底面ABCDE,SA=AB=AE=2,,⑴求异面直线CD与SB所成的角(用反三角函数值表示);⑵证明:BC⊥平面SAB;

6、⑶用反三角函数值表示二面角B—SC—D的大小(本小问不必写出解答过程)22.(本小题满分14分,第一小问满分4分,第二小问满分10分)已知,函数⑴当时,求使成立的的集合;⑵求函数在区间上的最小值23.(本小题满分14分,第一小问满分2分,第二.第三小问满分各6分)设数列的前项和为,已知,且,其中A.B为常数⑴求A与B的值;⑵证明:数列为等差数列;⑶证明:不等式对任何正整数都成立高考数学江苏卷试题及答案参考答案(1)D(2)A(3)C(4)B(5)D(6)B(7)D(8)B(9)C(10)A(11

7、)A(12)B(13)若,则(14)(15)(16)-1(17)2(18)-2(19)以的中点O为原点,所在的直线为x轴,建立平面直角坐标系,则(-2,0),(2,0),由已知,得因为两圆的半径均为1,所以设,则,即,所以所求轨迹方程为(或)(Ⅰ)记“甲连续射击4次,至少1次未击中目标”为事件A1,由题意,射击4次,相当于4次独立重复试验,故P(A1)=1-P()=1-=答:甲射击4次,至少1次未击中目标的概率为;(Ⅱ)记“甲射击4次,恰好击中目标2次”为事件A2,“乙射击4次,恰好击中目标3次

8、”为事件B2,则,,由于甲、乙设计相互独立,故答:两人各射击4次,甲恰好击中目标2次且乙恰好击中目标3次的概率为;(Ⅲ)记“乙恰好射击5次后,被中止射击”为事件A3,“乙第i次射击为击中”为事件Di,(i=1,2,3,4,5),则A3=D5D4,且P(Di)=,由于各事件相互独立,故P(A3)=P(D5)P(D4)P()=×××(1-×)=,答:乙恰好射击5次后,被中止射击的概率是(21)(Ⅰ)连结BE,延长BC、ED交于点F,则∠DCF=∠CDF=600,∴△CDF为正三角形,∴CF=DF又B

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
正文描述:

《高考数学(江苏卷)试题及答案》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、高考数学江苏卷试题及答案源头学子小屋一选择题:本大题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题意要求的1.设集合,,,则=()A.B.C.D.2.函数的反函数的解析表达式为()A.B.C.D.3.在各项都为正数的等比数列中,首项,前三项和为21,则=()A.33B.72C.84D.1894.在正三棱柱中,若AB=2,则点A到平面的距离为()A.B.C.D.5.中,,BC=3,则的周长为()A.B.C.D.6.抛物线上的一点M到焦点的距离为1,则点M的纵坐标是()A

2、.B.C.D.07.在一次歌手大奖赛上,七位评委为歌手打出的分数如下:,去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为()A.B.C.D.8.设为两两不重合的平面,为两两不重合的直线,给出下列四个命题:①若,,则;②若,,,,则;③若,,则;④若,,,,则其中真命题的个数是()A.1B.2C.3D.49.设,则的展开式中的系数不可能是()A.10B.40C.50D.8010.若,则=()A.B.C.D.11.点在椭圆的左准线上,过点P且方向为的光线经直线反射后通过椭圆的左焦点,则这个

3、椭圆的离心率为()A.B.C.D.12.四棱锥的8条棱代表8种不同的化工产品,有公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共顶点的两条棱所代表的化工产品放在同一仓库是安全的,现打算用编号为①.②.③.④的4个仓库存放这8种化工产品,那么安全存放的不同方法种数为()A.96B.48C.24D.0二.填写题:本大题共6小题,每小题4分,共24分把答案填在答题卡相应位置13.命题“若,则”的否命题为__________14.曲线在点处的切线方程是__________15.函数的定义域为_

4、_________16.若,,则=__________17.已知为常数,若,,则=__________18.在中,O为中线AM上一个动点,若AM=2,则的最小值是__________三.解答题:本大题共5小题,共66分解答应写出文字说明.证明过程或演算步骤19.(本小题满分12分)如图,圆与圆的半径都是1,,过动点P分别作圆.圆的切线PM、PN(M.N分别为切点),使得试建立适当的坐标系,并求动点P的轨迹方程本小题满分12分,每小问满分4分)甲.乙两人各射击一次,击中目标的概率分别是和假设两人射

5、击是否击中目标,相互之间没有影响;每人各次射击是否击中目标,相互之间也没有影响⑴求甲射击4次,至少1次未击中目标的概率;⑵求两人各射击4次,甲恰好击中目标2次且乙恰好击中目标3次的概率;⑶假设某人连续2次未击中目标,则停止射击问:乙恰好射击5次后,被中止射击的概率是多少?21.(本小题满分14分,第一小问满分6分,第二.第三小问满分各4分)如图,在五棱锥S—ABCDE中,SA⊥底面ABCDE,SA=AB=AE=2,,⑴求异面直线CD与SB所成的角(用反三角函数值表示);⑵证明:BC⊥平面SAB;

6、⑶用反三角函数值表示二面角B—SC—D的大小(本小问不必写出解答过程)22.(本小题满分14分,第一小问满分4分,第二小问满分10分)已知,函数⑴当时,求使成立的的集合;⑵求函数在区间上的最小值23.(本小题满分14分,第一小问满分2分,第二.第三小问满分各6分)设数列的前项和为,已知,且,其中A.B为常数⑴求A与B的值;⑵证明:数列为等差数列;⑶证明:不等式对任何正整数都成立高考数学江苏卷试题及答案参考答案(1)D(2)A(3)C(4)B(5)D(6)B(7)D(8)B(9)C(10)A(11

7、)A(12)B(13)若,则(14)(15)(16)-1(17)2(18)-2(19)以的中点O为原点,所在的直线为x轴,建立平面直角坐标系,则(-2,0),(2,0),由已知,得因为两圆的半径均为1,所以设,则,即,所以所求轨迹方程为(或)(Ⅰ)记“甲连续射击4次,至少1次未击中目标”为事件A1,由题意,射击4次,相当于4次独立重复试验,故P(A1)=1-P()=1-=答:甲射击4次,至少1次未击中目标的概率为;(Ⅱ)记“甲射击4次,恰好击中目标2次”为事件A2,“乙射击4次,恰好击中目标3次

8、”为事件B2,则,,由于甲、乙设计相互独立,故答:两人各射击4次,甲恰好击中目标2次且乙恰好击中目标3次的概率为;(Ⅲ)记“乙恰好射击5次后,被中止射击”为事件A3,“乙第i次射击为击中”为事件Di,(i=1,2,3,4,5),则A3=D5D4,且P(Di)=,由于各事件相互独立,故P(A3)=P(D5)P(D4)P()=×××(1-×)=,答:乙恰好射击5次后,被中止射击的概率是(21)(Ⅰ)连结BE,延长BC、ED交于点F,则∠DCF=∠CDF=600,∴△CDF为正三角形,∴CF=DF又B

显示全部收起
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
关闭