高考数学 圆锥曲线-双曲线题型总结

高考数学 圆锥曲线-双曲线题型总结

ID:9578935

大小:295.56 KB

页数:6页

时间:2018-05-03

高考数学 圆锥曲线-双曲线题型总结_第1页
高考数学 圆锥曲线-双曲线题型总结_第2页
高考数学 圆锥曲线-双曲线题型总结_第3页
高考数学 圆锥曲线-双曲线题型总结_第4页
高考数学 圆锥曲线-双曲线题型总结_第5页
资源描述:

《高考数学 圆锥曲线-双曲线题型总结》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、二、双曲线1、(21)(本小题满分14分)08天津已知中心在原点的双曲线C的一个焦点是,一条渐近线的方程是.(Ⅰ)求双曲线C的方程;(Ⅱ)若以为斜率的直线与双曲线C相交于两个不同的点M,N,线段MN的垂直平分线与两坐标轴围成的三角形的面积为,求的取值范围.(21)本小题主要考查双曲线的标准方程和几何性质、直线方程、两条直线垂直、线段的定比分点等基础知识,考查曲线和方程的关系等解析几何的基本思想方法,考查推理运算能力.满分14分.(Ⅰ)解:设双曲线的方程为().由题设得,解得,所以双曲线方程为.(Ⅱ)解:设直线的方程为().点,的坐标满足方程组将①式代入②

2、式,得,整理得.此方程有两个一等实根,于是,且.整理得. ③由根与系数的关系可知线段的中点坐标满足,.从而线段的垂直平分线方程为.此直线与轴,轴的交点坐标分别为,.由题设可得.整理得,.将上式代入③式得,整理得,.解得或.所以的取值范围是2、(上海理18)已知双曲线,为上的任意点。(1)求证:点到双曲线的两条渐近线的距离的乘积是一个常数;(2)设点的坐标为,求的最小值;解;(1)设是双曲线上任意一点,该双曲的两条渐近线方程分别是和.点到两条渐近线的距离分别是和,它们的乘积是.点到双曲线的两条渐线的距离的乘积是一常数.(2)设的坐标为,则,当时,的最小值为

3、,即的最小值为.3、(湖南理已知双曲线的左、右焦点分别为,,过点的动直线与双曲线相交于两点.(I)若动点满足(其中为坐标原点),求点的轨迹方程;(II)在轴上是否存在定点,使·为常数?若存在,求出点的坐标;若不存在,请说明理由.解:由条件知,,设,.解法一:(I)设,则则,,,由得即于是的中点坐标为.当不与轴垂直时,,即.又因为两点在双曲线上,所以,,两式相减得,即.将代入上式,化简得.当与轴垂直时,,求得,也满足上述方程.所以点的轨迹方程是.(II)假设在轴上存在定点,使为常数.当不与轴垂直时,设直线的方程是.代入有.则是上述方程的两个实根,所以,,于

4、是.因为是与无关的常数,所以,即,此时=.当与轴垂直时,点的坐标可分别设为,,此时.故在轴上存在定点,使为常数.解法二:(I)同解法一的(I)有当不与轴垂直时,设直线的方程是.代入有.则是上述方程的两个实根,所以..由①②③得.…………..…④.…………………⑤当时,,由④⑤得,,将其代入⑤有.整理得.当时,点坐标为,满足上述方程.当与轴垂直时,,求得,也满足上述方程.故点的轨迹方程是.(II)假设在轴上存在定点点,使为常数,当不与轴垂直时,由(I)有,.以上同解法一的(II).4、21.(本小题满分12分)06山东双曲线C与椭圆有相同的焦点,直线为C的

5、一条渐近线。(1)求双曲线C的方程;(2)过点的直线,交双曲线C于A、B两点,交轴于Q点(Q点与C的顶点不重合),当,且时,求点的坐标。解:(Ⅰ)设双曲线方程为由椭圆求得两焦点为,对于双曲线,又为双曲线的一条渐近线解得,双曲线的方程为(Ⅱ)解法一:由题意知直线的斜率存在且不等于零。设的方程:,则在双曲线上,同理有:若则直线过顶点,不合题意.是二次方程的两根.,此时.所求的坐标为.解法二:由题意知直线的斜率存在且不等于零设的方程,,则.,分的比为.由定比分点坐标公式得下同解法一解法三:由题意知直线的斜率存在且不等于零设的方程:,则.,.,,,又,即将代入得

6、,否则与渐近线平行。。解法四:由题意知直线l得斜率k存在且不等于零,设的方程:,则,。同理.即。(*)又消去y得.当时,则直线l与双曲线得渐近线平行,不合题意,。由韦达定理有:代入(*)式得所求Q点的坐标为

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。