高考数学复习好题精选 直线、平面垂直判定及其性质

高考数学复习好题精选 直线、平面垂直判定及其性质

ID:9536485

大小:164.76 KB

页数:5页

时间:2018-05-03

高考数学复习好题精选 直线、平面垂直判定及其性质_第1页
高考数学复习好题精选 直线、平面垂直判定及其性质_第2页
高考数学复习好题精选 直线、平面垂直判定及其性质_第3页
高考数学复习好题精选 直线、平面垂直判定及其性质_第4页
高考数学复习好题精选 直线、平面垂直判定及其性质_第5页
资源描述:

《高考数学复习好题精选 直线、平面垂直判定及其性质》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、直线、平面垂直判定及其性质题组一线面垂直的判定与性质1.(·宣武模拟)若a、b是空间两条不同的直线,α、β是空间的两个不同的平面,则a⊥α的一个充分条件是(  )A.a∥β,α⊥β        B.a⊂β,α⊥βC.a⊥b,b∥αD.a⊥β,α∥β解析:只有选项D,a⊥β,α∥β⇒a⊥α.答案:D2.(·烟台模拟)如图在斜三棱柱ABC-A1B1C1中,∠BAC=90°,BC1⊥AC,则C1在底面ABC上的射影H必在(  )A.直线AB上B.直线BC上C.直线AC上D.△ABC内部解析:由AC⊥AB,AC⊥BC1,得AC⊥平面ABC1,AC⊂平面ABC,∴

2、平面ABC1⊥平面ABC,C1在面ABC上的射影H必在二平面交线AB上.答案:A3.m、n是空间两条不同的直线,α、β是两个不同的平面,下面四个命题中,真命题的序号是________.①m⊥α,n∥β,α∥β⇒m⊥n;②m⊥n,α∥β,m⊥α⇒n∥β;③m⊥n,α∥β,m∥α⇒n⊥β;④m⊥α,m∥n,α∥β⇒n⊥β.解析:①显然正确;②错误,n还可能在β内;③错误,n可能与β相交但不垂直;④正确.答案:①④题组二平面与平面垂直的判定与性质4.如图所示,在四棱锥P-ABCD中,PA⊥底面ABCD,且底面各边都相等,M是PC上的一动点,当点M满足______

3、____时,平面MBD⊥平面PCD.(只要填写一个你认为是正确的条件即可)解析:由三垂线定理可知,BD⊥PC.∴当DM⊥PC(或BM⊥PC)时,即有PC⊥平面MBD,而PC⊂平面PCD,∴平面MBD⊥平面PCD.答案:DM⊥PC(或BM⊥PC等)5.(·苏北模拟)在四棱锥S-ABCD中,已知AB∥CD,SA=SB,SC=SD,E、F分别为AB、CD的中点.(1)求证:平面SEF⊥平面ABCD;(2)若平面SAB∩平面SCD=l,求证:AB∥l.解:(1)证明:由SA=SB,E为AB中点得SE⊥AB.由SC=SD,F为CD中点得SF⊥DC.又AB∥DC,∴A

4、B⊥SF.又SF∩SE=S,∴AB⊥平面SEF.又∵AB⊂平面ABCD,∴平面SEF⊥平面ABCD.(2)∵AB∥CD,CD⊂面SCD,∴AB∥平面SCD.又∵平面SAB∩平面SCD=l,根据直线与平面平行的性质定理得AB∥l.题组三直线、平面垂直的综合问题6.(·岳阳模拟)设a、b、c表示三条直线,α、β表示两个平面,则下列命题的逆命题不成立的是(  )A.c⊥α,若c⊥β,则α∥βB.b⊂α,c⊄α,若c∥α,则b∥cC.b⊂β,若b⊥α,则β⊥αD.b⊂β,c是a在β内的射影,若b⊥c,则b⊥a解析:C选项的逆命题为b⊂β,若β⊥α则b⊥α.不正确,

5、因为根据平面垂直的性质定理,如果两个平面垂直,其中一个平面内的直线只有垂直交线的才垂直另一个平面.答案:C7.如图,正方体AC1的棱长为1,过点A作平面A1BD的垂线,垂足为点H,则下列命题中错误的是(  )A.点H是△A1BD的垂心B.AH垂直于平面CB1D1C.AH的延长线经过点C1D.直线AH和BB1所成角为45°解析:因为三棱锥A-A1BD是正三棱锥,故顶点A在底面的射影是底面的中心,A正确;平面A1BD∥平面CB1D1,而AH垂直于平面A1BD,所以AH垂直于平面CB1D1,B正确;根据对称性知C正确.答案:D8.(文)(·天津高考)如图,在四棱

6、锥P-ABCD中,PD⊥平面ABCD,AD⊥CD,DB平分∠ADC,E为PC的中点,AD=CD=1,DB=2.(1)证明PA∥平面BDE;(2)证明AC⊥平面PBD;解:(1)证明:设AC∩BD=H,连结EH.在△ADC中,因为AD=CD,且DB平分∠ADC,所以H为AC的中点.又由题设,E为PC的中点,故EH∥PA.又EH⊂平面BDE且PA⊄平面BDE,所以PA∥平面BDE.(2)证明:因为PD⊥平面ABCD,AC⊂平面ABCD,所以PD⊥AC.由(1)可得,DB⊥AC.又PD∩DB=D,故AC⊥平面PBD.(理)(·北京高考)如图,在三棱锥P-ABC中

7、,PA⊥底面ABC,PA=AB,∠ABC=60°,∠BCA=90°,点D、E分别在棱PB、PC上,且DE∥BC.(1)求证:BC⊥平面PAC;(2)当D为PB的中点时,求AD与平面PAC所成的角的正弦值;(3)是否存在点E使得二面角A-DE-P为直二面角?并说明理由.解:(1)∵PA⊥底面ABC,∴PA⊥BC.又∠BCA=90°,∴AC⊥BC,∴BC⊥平面PAC.(2)∵D为PB的中点,DE∥BC,∴DE=BC.又由(1)知,BC⊥平面PAC,∴DE⊥平面PAC,垂足为点E,∴∠DAE是AD与平面PAC所成的角.∵PA⊥底面ABC,∴PA⊥AB.又PA=A

8、B,∴△ABP为等腰直角三角形,∴AD=AB.在Rt△ABC中,∠

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。