欢迎来到天天文库
浏览记录
ID:9534163
大小:440.50 KB
页数:12页
时间:2018-05-03
《外文翻译--一种解决盲分离和盲信号去卷积的信息最大化方法》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、附录4英文原文Aninformation-maximisationapproachtoblindseparationandblinddeconvolutionAnthonyJ.BellandTerrenceJ.SejnowskiComputationalNeurobiologyLaboratoryTheSalkInstituteN.TorreyPinesRoadLaJolla,California92037AbstractWederiveanewself-organisinglearningal
2、gorithmwhichmaximisestheinfor-mationtransferredinanetworkofnon-linearunits.Thealgorithmdoesnotassumeanyknowledgeoftheinputdistributions,andisdefinedhereforthezero-noiselimit.Undertheseconditions,informationmaximisationhasextrapropertiesnotfoundinthel
3、inearcase(Linsker1989).Thenon-linearitiesinthetransferfunctionareabletopickuphigher-ordermomentsoftheinputdistributionsandperformsomethingakintotrueredundancyreductionbetweenunitsintheoutputrepresentation.Thisenable-sthenetworktoseparatestatistically
4、independentcomponentsintheinputs:ahigher-ordergeneralisationofPrincipalComponentsAnalysis.Weapplythenetworktothesourceseparation(orcocktailparty)problem,succe-ssfullyseparatingunknownmixturesofuptotenspeakers.Wealsoshowthatavari-antonthenetworkarchit
5、ectureisabletoperformblinddeconvolution(cancellationofunknownechoesandreverberationinaspeechsignal).Finally,wederivedepend-enciesofinformationtransferontimedelays.Wesuggestthatinformationmaximi-sationprovidesaunifyingframeworkforproblemsin‘blind’sign
6、alprocessing.附录41IntroductionThispaperpresentsaconvergenceoftwolinesofresearch.Thefirst,thedevelopme-ntofinformationtheoreticunsupervisedlearningrulesforneuralnetworkshasbeenpioneeredbyLinsker1992,Becker&Hinton1992,Atick&Redlich1993,Plumble-y&Fallsid
7、e1988andothers.Thesecondistheuse,insignalprocessing,ofhigher-orderstatistics,forseparatingoutmixturesofindependentsources(blindsep-aration)orreversingtheeffectofanunknownfilter(blinddeconvolution).Methodsexistforsolvingtheseproblems,butitisfairtosayt
8、hatmanyofthemareadhoc.Theliteraturedisplaysadiversityofapproachesandjustifications—forhistoricalre-viewssee(Comon1994)and(Haykin1994a).Inthispaper,wesupplyacommontheoreticalframeworkfortheseproblemsthroughtheuseofinformation-theoreticobjectivefunctio
此文档下载收益归作者所有