欢迎来到天天文库
浏览记录
ID:236479
大小:211.17 KB
页数:12页
时间:2017-07-11
《一种解决盲分离和盲信号去卷积的信息最大化方法-外文翻译》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、英文原文Aninformation-maximisationapproachtoblindseparationandblinddeconvolutionAnthonyJ.BellandTerrenceJ.SejnowskiComputationalNeurobiologyLaboratoryTheSalkInstitute100010N.TorreyPinesRoadLaJolla,California92037AbstractWederiveanewself-organisinglearningalgorithmwhichmaximisestheinf
2、or-mationtransferredinanetworkofnon-linearunits.Thealgorithmdoesnotassumeanyknowledgeoftheinputdistributions,andisdefinedhereforthezero-noiselimit.Undertheseconditions,informationmaximisationhasextrapropertiesnotfoundinthelinearcase(Linsker1989).Thenon-linearitiesinthetransferfun
3、ctionareabletopickuphigher-ordermomentsoftheinputdistributionsandperformsomethingakintotrueredundancyreductionbetweenunitsintheoutputrepresentation.Thisenable-sthenetworktoseparatestatisticallyindependentcomponentsintheinputs:ahigher-ordergeneralisationofPrincipalComponentsAnalys
4、is.Weapplythenetworktothesourceseparation(orcocktailparty)problem,succe-ssfullyseparatingunknownmixturesofuptotenspeakers.Wealsoshowthatavari-antonthenetworkarchitectureisabletoperformblinddeconvolution(cancellationofunknownechoesandreverberationinaspeechsignal).Finally,wederived
5、epend-enciesofinformationtransferontimedelays.Wesuggestthatinformationmaximi-sationprovidesaunifyingframeworkforproblemsin‘blind’signalprocessing.1IntroductionThispaperpresentsaconvergenceoftwolinesofresearch.Thefirst,thedevelopme-ntofinformationtheoreticunsupervisedlearningrules
6、forneuralnetworkshasbeenpioneeredbyLinsker1992,Becker&Hinton1992,Atick&Redlich1993,Plumble-y&Fallside1988andothers.Thesecondistheuse,insignalprocessing,ofhigher-orderstatistics,forseparatingoutmixturesofindependentsources(blindsep-aration)orreversingtheeffectofanunknownfilter(bli
7、nddeconvolution).Methodsexistforsolvingtheseproblems,butitisfairtosaythatmanyofthemareadhoc.Theliteraturedisplaysadiversityofapproachesandjustifications—forhistoricalre-viewssee(Comon1994)and(Haykin1994a).Inthispaper,wesupplyacommontheoreticalframeworkfortheseproblemsthroughtheus
8、eofinformation-theoreticobjectivefunctio
此文档下载收益归作者所有