1 second order runge-kutta method

1 second order runge-kutta method

ID:9368171

大小:589.50 KB

页数:18页

时间:2018-04-29

1 second order runge-kutta method_第1页
1 second order runge-kutta method_第2页
1 second order runge-kutta method_第3页
1 second order runge-kutta method_第4页
1 second order runge-kutta method_第5页
资源描述:

《1 second order runge-kutta method》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、TitleDerivethemodifiedEuler’smethod(ref.Page546#4)andMidpointmethod:.Forinitialvalueproblemon[0,2]withh=0.1,giventheresultbythesetwomethods.Findthelinearinterpolationpolynomialsplinesandcomparewiththeanalyticsolution(graphcurve).Method1.SecondorderRunge-KuttaMethodletusbegi

2、nwiththeTaylorseriesfor:Fromthedifferentialequation…wherexmeansx(t),fmeansf(t,x)becausesoHence,theformulaforadvancingthesolutioniswhereandIngeneral,second-orderRunge-KuttaformulasareoftheformwhereareparametersatourdisposalBy=>ifwechoicetheresultingformulafromiscalledthemodi

3、fiedEuler’smethod:where2.Midpointmethod(FromWikipedia,thefreeencyclopedia.)Innumericalanalysis,abranchofappliedmathematics,themidpointmethodisaone-stepmethodforsolvingthedifferentialequationnumerically,andisgivenbytheformulaHere,histhestepsize—asmallpositivenumber,tn=t0+nh,

4、andynisthecomputedapproximatevalueofy(tn).Thenameofthemethodcomesfromthefactthattn+h/2isthemidpointbetweentnatwhichthevalueofy(t)isknownandtn+1atwhichthevalueofy(t)needstobefound.DerivationofthemidpointmethodThemidpointmethodisarefinementoftheEuler'smethodandisderivedinasim

5、ilarmanner.ThekeytoderivingEuler'smethodistheapproximateequalitywhichisobtainedfromtheslopeformulaandkeepinginmindthaty'=f(t,y).Forthemidpointmethod,onereplaces(3)withthemoreaccuratewheninsteadof(2)wefindOnecannotusethisequationtofindy(t+h)asonedoesnotknowyatt+h/2.Thesoluti

6、onisthentouseaTaylorseriesexpansionwhich,whenpluggedin(4),givesusandthemidpointmethod(1).★上述MidpointMethod的導法並不是題目上所需!上述所呈現的式子,可以明顯看出為 single-stepmethod ,然而題目上所用的MidpointMethod的式子為,可以看出是 multistepmethod ,所以上述的導法對於題目所用的MidpointMethod 並不適用!Because=>whereAlgorthm1.Useseparable

7、equationso(Mathematica)(Mathematica)2.ModifiedEuler’sMethod(Mathematica)3.MidpointMethod(Matlab)findthex(0.1)byFourth-OrderRunge-KuttaMethodanduseMidpointMethodfunctionfx=fxsys(t,X)%computeK1,K2,K3andK4ofRunge-Kuttamethod%fx=zeros(length(X),1);fx(1)=-X(1);fx(2)=X(1)+X(2)-t^

8、2*(4-t);typerk4sys.mfunctionrs=rk4sys(X0,a,b,m)%toreturntheapproximationvaluesofX(

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。