欢迎来到天天文库
浏览记录
ID:9256336
大小:117.00 KB
页数:4页
时间:2018-04-25
《2017浙教版数学九年级上册4.2《相似三角形》word教案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、4.2相似三角形教学目标:1.了解相似三角形的概念,会表示两个三角形相似.2.能运用相似三角形的概念判断两个三角形相似.[来源:www.shulihua.net]3.理解“相似三角形的对应角相等,对应边成比例”的性质.重点和难点:1.本节教学的重点是相似三角形的概念2.在具体的图形中找出相似三角形的对应边,并写出比例式,需要学生具有一定的分辨能力,是本节教学的难点.知识要点:1、对应角相等,对应边成比例的两个三角形叫做相似三角形.2、相似三角形的对应角相等,对应边成比例.3、相似三角形对应边的比,叫做两个相似三角形的相似比(或相似系数)重要方法:1、全等三角形是相似三角形的特殊情况,
2、它的相似比是1.2、相似三角形中,利用对应角寻找对应边;反过来利用对应边寻找对应角.3、书写相似三角形时,需要把对应顶点的字母写在对应的位置上.[来源:www.shulihua.net]教学过程一.创设情境,导入新课1.课件出示:①国旗上的☆,②同一底片不同尺寸的照片.以上图形之间可以通过怎样的图形变换得到?2.经过相似变换后得到的像与原像称为相似图形.那么将一个三角形作相似变换后所得的像与原像称为相似三角形二.合作学习,探索新知1.合作学习如图1,在方格纸内先任意画一个△ABC,然后画出△ABC经某一相似变换(如放大或缩小若干倍)后得到像△A′B′C′(点A′、B′、C′分别对应点
3、A、B、C).[来源:www.shulihua.net][来源:www.shulihua.netwww.shulihua.net]问题讨论1:△A′B′C′与△ABC对应角之间有什么关系?问题讨论2:△A′B′C′与△ABC对应边之间有什么关系?学生相互比较得到结论:对应角相等,对应边成比例.2.由合作学习定义相似三角形的概念(1)相似三角形:一般地,对应角相等,对应边成比例的两个三角形,叫做相似三角形(2)表示:相似用符号“∽”来表示,读作“相似于”如△A′B′C′与△ABC相似,记做“△A′B′C′∽△ABC”.注意:在表示三角形相似时,一般把对应顶点的字母写在对应的位置上[来源
4、:www.shulihua.netwww.shulihua.net](3)定义的几何语言表述:∵∠A′=∠A,∠B′=∠B,∠C′=∠C,==∴△A′B′C′∽△ABC3.结合定义探求性质(1)性质:相似三角形的对应角相等,对应边成比例(由学生根据定义得出,理解定义的双重性,既可以用来判定两个三角形相似,同时,其本身又是三角形相似的一个性质)(2)相似比(相似系数):相似三角形对应边的比,叫做两个相似三角形的相似比(或相似系数)注意:求两个相似三角形的相似比,应注意这两个三角形的前后顺序.如图,△A′B′C′与△ABC的相似比为(k),△ABC与△A′B′C′的相似比为2()4.问题
5、探究:问题一:两个直角三角形一定相似吗?为什么?问题二:两个等腰三角形一定相似吗?为什么?问题三:两个等腰直角三角形一定相似吗?为什么?问题四:两个等边三角形一定相似吗?为什么?问题五:两个全等三角形一定相似吗?为什么?变形:相似比为1的两个三角形全等吗?[来源:www.shulihua.netwww.shulihua.net]问题六:如果两个全等三角形中的一个与第三个三角形相似,那么这两个全等三角形的另一个也与第三个三角形相似吗?为什么?(有学生同桌或小组合作讨论,说明原因或举反例说明)提示说明:本节课要说明两个三角形相似,应结合定义说明理由,也就是说要同时满足对应角相等,对应边成
6、比例;但要说明不相似,则只要否定其中一个条件即可.5.课堂练习:完成课本“做一做”分析订正时可作如下启发:要写出△ADE与△ABC的对应角与对应边成比例的比例式,关键在于找出这两个三角形对应的边与角,因此,也只需找出相对应的顶点字母即可三.学以致用,体验成功[来源:www.shulihua.net]1.讲解例1:已知:如图2,D、E分别是AB、AC边的中点,求证:△ADE∽△ABC分析:要说明△ADE∽△ABC,根据三角形相似的定义,应说明这两个三角形的三个对应角对应相等,三条边对应成比例.[来源:www.shulihua.net]证明:∵D,E分别是AB,AC的中点,∴DE∥BC,
7、DE=BC,∴∠ADE=∠B,∠AED=∠C[来源:www.shulihua.net]在△ADE和△ABC中∠ADE=∠B∠AED=∠C∠A=∠A===△ADE∽△ABC(相似三角形的定义)说明:根据定义说明两个三角形相似,必须说明这两个三角形同时满足对应角相等,对应边成比例.缺一不可.[来源:www.shulihua.net]2.讲解例2:[来源:www.shulihua.netwww.shulihua.net][来源:www.shulihua.net]
此文档下载收益归作者所有