资源描述:
《基于图像的水稻灯诱害虫自动识别技术的研究》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、中国水稻科学(ChinJRiceSci),2015,29(3):299-304http://www.ricesci.cnDOI:10.3969/ji.ssn.1001G7216.2015.03.009299基于图像的水稻灯诱害虫自动识别技术的研究冼鼎翔1姚青1,∗杨保军2罗举2谭畅1张超1徐一成2,∗(1浙江理工大学信息学院,杭州310018;2中国水稻研究所,杭州310006;∗通讯联系人,EGmail:qGyao@zstu.edu.cn;xuyicheng@caas.cn)AutomaticIdentificati
2、onofRiceLightGtrappedPestsBasedonImagesXIANDingGxiang1,YAOQing1,∗,YANGBaoGjun2,LUOJu2,TANChang1,ZHANGChao1,XUYiGcheng2,∗(1CollegeofInformation,ZhejiangSciGTechUniversity,Hangzhou310018,China;2ChinaNationalRiceResearchInstitute,Hangzhou310006,China;∗Corresponding
3、author,EGmail:qGyao@zstue.duc.n;xuyicheng@caasc.n)XIANDingxiang,YAOQing,YANGBaojun,etal.AutomaticidentificationofricelightGtrappedpestsbasedonimages.ChinJRiceSci,2015,29(3):299G304.Abstract:AutomaticidentificationandcountofricelightGtrappedpestsisacommonandimpor
4、tantpestforecastingmethodinpaddyfields.However,mostofthelightGtrappedpestsareunnecessarytobemonitoredandmustberemoved.ThismanualmethodistimeGconsumingandfatiguingwithalowaccuracyrate.WedevelopedanautomaticmethodforidentifyingricelightGtrappedpestsbasedontheimage
5、s.Firstly,wedividedtheimagesintoseveralgroupsaccordingtotheirmorphologicalfeatures.Eachgrouphasthreeclassifications:thebackGsideimageofapest,theabdomenGsideimageofthispest,andnonGforecastingpestimagesimilartothispest.Then,thirtyGonefeaturesincludingthecolor,shap
6、eandtexturefeatureswereextractedfromeachinsectimage.Finally,threesupportvectormachineclassifierswithposteriorprobabilitieswereusedtotrainandtestthethreegroupsofinsects,respectively.Intheresults,thebackGsideimageandtheabdomenGsideimageofapestwereconsideredasthesa
7、mespecies.Weachieveda97.4%accuracyrateinthethreespeciesofricelightGtrappedpests.Keywords:lightGtrappedpests;imagefeatures;supportvectormachineclassifier;automaticidentification;nonGforecastingpestsrejection;forecasting;rice冼鼎翔,姚青,杨保军,等.基于图像的水稻灯诱害虫自动识别技术的研究.中国水稻科
8、学,2015,29(3):299G304.摘要:利用灯光诱杀稻田害虫,并识别与计数这些害虫是水稻害虫的一种常规但非常重要的测报方法.在灯光诱杀的昆虫中,大多数昆虫是不需要测报的,因此,在人工识别灯诱测报害虫时,需要排除这些昆虫.这种人工识别与计数害虫的方法效率低、任务重、识别准确率差.我们提出了一种基于图像的水稻灯诱害虫自动识别方