欢迎来到天天文库
浏览记录
ID:8995082
大小:101.07 KB
页数:6页
时间:2018-04-14
《关于模式识别的一些认识》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、关于模式识别的一些认识模式识别的概念和认识什么是模式呢?广义地说,存在于时间和空间中可观察的事物,如果可以区别它们是否相同或是否相似,都可以称之为模式。但模式所指的不是事物本身,而是我们从事物获取的信息。因此模式往往表现为具有时间或空间分布的信息。人们在观察各种事物的时候,一般是从一些具体的个别事物或者很小一部分开始的,然后经过长期的积累。随着对观察到的事物或者现象的数量不断增加,就开始在人的大脑中形成一些概念,而这些概念是反映事物或者现象之间的不同或者相似之处,这些特征或者属性使人们对事物自然而然的进行分类。从而窥豹一斑,对于一些事物或
2、者现象,不需要了解全过程,只需要根据事物或者现象的一些特征就能对事物进行认识。人脑的这种思维能力视为“模式”的概念。模式识别(PatternRecognition)是指对表征事物或现象的各种形式的信息进行处理和分析,以对事物或现象进行描述、辨认、分类和解释的过程。它是信息科学和人工智能的重要组成部分,主要应用领域是图像分析与处理、语音识别、声音分类、通信、计算机辅助诊断、数据挖掘等学科。在计算机领域里是指通过借助计算机,对人类外部世界某一特定环境中的客体、过程和现象进行自动识别的技术。这个技术在我们身边最典型的应用应该是现在各种相机里的人
3、脸识别技术。那么计算机是如何识别出我们的脸部呢?是通过识别人脸的各种特征值以及特征值的组合形式。我们每个人的脸孔都是两只眼睛一个鼻子一张嘴,毋庸置疑,这就是“脸”的模式,而且通过识别脸部肤质,眼窝的阴影还可以测算人的年龄,而嘴角是否上扬则成了判断情绪的特征等。而其实“模式识别”作为一种人工智能,是模仿人类而来的,我们人才是“模式识别”最厉害的角色。除非是患有“脸盲症”这种疾病,不然我们是非常容易识别出一张人脸以及各种相关属性。喜欢评价小孩像爸爸还是像妈妈就是这种本能的体现,我们从脸上看到了些什么,提取脸部特征值做比对。而且对人脸这个“模式
4、识别”的极度熟练,让我们一遇到有类似特征值的物体就进行调用,这就是人经常能把很多东西看成人脸的原因。在小学的自然科学课本里有一个著名的条件反射实验,巴普洛夫的狗。巴普洛夫先生这样做实验,摇铃然后给狗食物,狗得到食物会分泌唾液,如此反复。经过30次重复后,单独的声音刺激就可以使狗产生很多唾液。而斯金纳也有一个著名的盒子,用来做动物心理实验。斯金纳把鸽子放进一个装有按钮的盒子里,鸽子要是按中其中一个钮,就给它一点奖赏。而鸽子总会找出一种模式,无论它们在拿到奖赏前做了什么动作,它们都会不停地重复那动作。有时候是逆时针倒转两次,正转一次,然后啄按
5、钮。有时候是其它动作,但鸽子们都相信就是这个动作让它有食可吃。同理,同为生物的人类的我们也是跟实验中的这些动物一样:喜欢赋予意义,相信某种模式。星座也是这么流行起来的,当然各种条件要更为复杂一点。模式识别的方法1. 统计模式识别: 统计模式识别是对模式的统计分类方法。即结合统计概率论的贝叶斯决策系统进行模式识别的技术,又称为决策理论识别方法。识别是从模式中提取一组特性的度量,构成特征向量来表示。然后通过划分特征空间的方式进行分类。利用模式与子模式分层结构的树状信息所完成的模式识别工作,就是结构模式识别或句法模式识别。 统计模式识别
6、主要是利用贝叶斯决策规则解决最优分类器问题。统计决策理论的基本思想就是在不同的模式类中建立一个决策边界,利用决策函数把一个给定的模式归入相应的模式类中。在统计模式识别中,贝叶斯决策规则从理论上解决了分类器的设计问题。但贝叶斯方法计算条件概率函数是非常困难的,因为在实际中条件概率一般是未知的,必须从数据样本中估计出来,然而在估算条件概率的时候,受制于样本的数量。样本太少,不能够表征要研究的某类问题。样本太多,给数据采集会造成一定的麻烦,而且计算量也增大了。为此人们提出了各种解决方法。 1.1最大似然估计和贝叶斯估计: 这两种方法的前提条
7、件是各类别的条件概率密度的形式已知,而参数类未知。在此情况下,对现有的样本进行参数估计。参数估计在统计学中是很经典的算法,而最大似然估计和贝叶斯估计也是参数估计中常用的方法。最大似然估计是把待估参数看作确定性的量,只是其取值未知,最大似然估计方法所寻找的是能最好解释训练样本的那个参数值,贝叶斯估计把待估参数看作是符合某种先验概率分布的随机变量,而训练样本的作用就是把先验概率转化为后验概率。实际生活中,用的更多的还是最大似然估计,因为此方法更容易实现,而且样本数据充足的情况下,得到的分类器效果比较好。 1.2监督参数统计法: 1.2.1
8、、KNN法及其衍生法 KNN法也成为K最近领域法,是模式识别的标准算法之一。其基本原理是先将已经分好类别的训练样本点记入到多维空间,然后将待分类的未知样本也记入空间。考察未知样本的K个近邻
此文档下载收益归作者所有