欢迎来到天天文库
浏览记录
ID:8893667
大小:17.50 KB
页数:3页
时间:2018-04-10
《2015年南昌航空大学专升本高等数学考试大纲》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、《高等数学》考试大纲 一、考试内容1、函数、极限和连续:函数的概念与性质,反函数,分段函数,复合函数和隐函数,初等函数,数列的极限与函数的极限的概念与性质,左、右极限,无穷小与无穷大的概念及其关系,无穷小的性质及无穷小的比较,极限的四则运算法则和两个重要的极限。函数连续的概念,函数间断点的类型,初等函数的连续性,闭区间上连续函数的性质。2、一元函数微分学:导数与微分的概念,导数的几何意义,函数的可导性与连续性之间的关系,平面曲线的切线和法线,基本初等函数的导数,导数与微分的四则运算,复合函数、反函数、隐含数以及参数方程所确定的函数的导数,
2、高阶导数的概念,某些简单函数的n阶导数,一阶微分形式的不变性,罗尔中值定理,拉格朗日中值定理和柯西中值定理,洛必达法则,函数单调性的判定,函数的极限值与求法,函数图形的凹凸性,拐点及水平、铅直渐近线,函数图形的描绘,函数最值与求值。3、一元函数积分学:原函数和不定积分的概念,不定积分的性质,基本积分公式。定积分的概念与性质,积分中值定理,变上限函数及其导数,牛顿——莱布尼兹公式,不定积分与定积分的换元积分法和分部积分法,广义积分的概念及其计算,定积分的几何应用及一些简单的物理应用。4、向量代数与空间解析几何,向量的概念,向量的线性运算,向
3、量的数量积和向量积的概念及运算,两个向量垂直、平行的条件,两个向量的夹角,向量的坐标表达式及其运算,单位向量与方向余弦,曲面方程与空间曲线方程的概念,平面和直线的方程,平面与平面、平面与直线、直线与直线相互平行、垂直的条件和夹角,点到平面和点到直线的距离,球面、柱面和旋转曲面的方程,常用二次曲面的方程及图形,空间曲线的方程及其在坐标平面上的投影曲线的方程。5、多元函数微分学:多元函数的概念,二元函数的几何意义,多元函数的极限和连续的概念,有界闭区域上多元连续函数的性质,多元函数偏导数的概念与几何意义,全微分的概念,全微分存在的必要条件和充
4、分条件,多元复合函数、隐函数的求导方法,二阶偏导数,空间曲线的切线和法平面,曲面的切平面和法线,多元函数极值和条件极值的概念,多元函数极值的必要条件,二元函数极值的充分条件,多元函数极值和最值的求法。6、多元函数积分学:二重积分的概念和性质,二重积分的计算和应用。三重积分的概念与三重积分的计算、两类曲线积分的概念、性质及计算,格林公式,平面曲线积分与路经无关的条件,二元函数全微分求积。7、无穷级数:常数项级数的收敛与发散的概念,收敛级数的和的概念,级数的基本性质与收敛的必要条件,几何级数、P一级数敛散性,正项级数的比较审敛法、比值审收法,
5、交错级数的概念及其莱布尼茨审敛法,任意项级数绝对收敛与条件收敛的概念以及它们之间的关系。函数项级数的收敛域与和函数的概念,幂级数的概念及其收敛半径、收敛域的求法,幂级数的和函数的概念,幂级数在其收敛区间内的基本性质,简单幂级数和函数的求法。8、常微分方程:常微分方程的概念,微分方程的解、阶、通解、初始条件和特解,变量可分离方程,齐次方程,一阶线性方程,可降阶的高阶微分方程,线性微分方程解的性质及解的结构定理,二阶常系数齐次线性微分方程,简单的二阶常系数非齐次线性微分方程。二、考试要求1、函数、极限和连续:理解函数的概念,了解分段函数,了解
6、复合函数的概念,会分析复合函数的复合过程,熟悉基本初等函数及其图形。了解函数极限的概念,了解无穷小、无穷大的概念及其相互关系,会对无穷小量进行比较。知道夹通准则和单调有界极限存在准则,会用两个重要极限求极限,掌握极限的四则运算法则,理解函数连续的概念,知道初等函数的连续性和闭区间上连续函数的性质,会判断函数间断点的类型,会求连续函数和分段函数的极限。星原专升本扣:8000-89910、22487015512、一元函数微分学:理解导数和微分的概念,了解导数、微分的几何意义,了解函数可导、可微、连续之间的关系。掌握导数和微分的运算法则和导数的
7、基本公式,了解高阶导数的概念,会求一些简单函数的n阶导数。掌握隐函数和参数方程所确定的函数的一阶导数,会求它们的二阶导数。了解罗尔定理和拉格朗日中值定理,知道柯西中值定理。理解函数极值、最值的概念,掌握求函数的极值、判断函数的增减与函数图形的凹向、以及求函数图形的拐点的求法,掌握简单的最值问题的求解,能描绘简单的常用函数的图形。掌握洛必达法则,会求未定式与的极限。 3、一元函数积分学:理解原函数、不定积分与定积分的概念,掌握不定积分和定积分的基本性质及定积分中值定理,掌握不定积分的基本公式,掌握不定积分和定积分的换元积分和分部积分法,理解
8、变上限函数的概念,会求变上限函数的导数,掌握牛顿——莱布尼茨公式,知道广义积分的概念,掌握广义积分的计算方法。掌握定积分的几何应用,知道定积分的一些物理应用。星原专升本:15979868189
此文档下载收益归作者所有