欢迎来到天天文库
浏览记录
ID:8836369
大小:101.00 KB
页数:3页
时间:2018-04-09
《排列中几种常见类型的解法》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、排列中几种常见类型的解法湖北省红安县大赵家高中彭春齐邮箱:wudan685941@163.com联系方式:13872037093解排列问题,首先必须认真审题,明确问题是否是排列问题,其次是抓住问题的本质特征,灵活运用两个基本计数原理和公式进行分析解答,同时还要注意研究一些基本策略和方法技巧,使一些看似复杂的问题迎刃而解。下面就介绍几种常见排列问题的解法:1.分排问题“直排法”把几个元素排成前后若干排的排列问题,若没有其它的特殊要求,可采用统一排成一排的方法来处理。例1.7人坐两排座位,第一排坐3个人,第二排坐4个人,则不同的坐法有多少种?解析:7个人可以在两排中随意就坐,再无其它条件
2、,故两排可看作一排来处理,不同的坐法共有种。2.相邻问题“捆绑法”排列问题中要求几个元素相邻就把几个相邻的元素捆绑在一起作为一个整体,先让这几个相邻元素作全排列,然后把整体与其它元素作全排列。例2.有3名男生,4名女生排成一行,其中男生必须在一起有多少种不同的排法?解析:将男生看作一个整体,进行全排列,再与其它元素进行全排列,共有种不同的排法。3.不相邻问题“插空法”先排好其它元素,再把要求不相邻的元素插入其它元素形成的空位中就可确保其不相邻。例3.有3名男生,4名女生排成一行,要求男、女各不相邻,有多少种不同的排法?解析:先排好男生,然后将女生插入其中的4个空位中有种不同的排法。4
3、.顺序固定问题用“除法”对于某几个元素顺序一定的排列问题,可先把这几个元素与其它元素一同进行排列,然后用总的排列数除以这几个元素的全排列数。例4.五人排队甲在乙前面的排法有几种?解析:若不考虑限制条件,则有种排法,而甲、乙之间排法有种,故甲在乙前面的排法只有一种符合条件,故符合条件的排法有种。5.用比例法解排列问题有些排列应用题,可以根据每个元素出现的机会占整个问题的比例,直接求得问题的解。例5.由数字1,2,3,4,5组成没有重复数字的五位数,其中小于50000的偶数共有多少种?解析:全排列为种,由题意知满足条件的五位数的个位数上出现2或4的可能性为,在余下的四个数字中,万位上出现
4、满足条件的数字的可能性为,故满足条件的五位数共有种。6.环排问题“线排法”例6.8人围桌而坐,共有多少种坐法?解析:围桌而坐与坐成一排的不同点在于,坐成圆形没有首尾之分,所以固定一人A并从此位置把圆形展成直线,其余7人共有(8-1)!=5040种排法.排列问题千变万化,没有一成不变的方法,在求解过程中关键是抓住问题本质,并遵循两个原则:(1)按事情发生的过程进行分步(2)按元素的性质进行分类,灵活处理就能找到适当的解题方法。
此文档下载收益归作者所有