函数与映射的相关概念

函数与映射的相关概念

ID:8823277

大小:18.15 KB

页数:4页

时间:2018-04-08

函数与映射的相关概念_第1页
函数与映射的相关概念_第2页
函数与映射的相关概念_第3页
函数与映射的相关概念_第4页
资源描述:

《函数与映射的相关概念》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、1、映射:(1)设A,B是两个非空集合,如果按照某一个确定的对应关系f,使对于集合A中的任何一个元素x,在集合B中都有唯一确定的元素y与之对应,那么,就称对应f:A→B为从集合A到集合B的映射,记作:f:A→B。(2)像与原像:如果给定一个集合A到集合B的映射,那么,和集合A中的a对应的集合B中的b叫做a的像,a叫做b的原像。 2、函数:(1)定义(传统):如果在某变化过程中有两个变量x,y并且对于x在某个范围内的每一个确定的值,按照某个对应法则,y都有唯一确定的值和它对应,那么y就是x的函数,x叫做自变量,x的取值范围叫做函数的定义域,和x的值对应的y的值

2、叫做函数值,函数值的集合叫做函数的值域。(2)函数的集合定义:设A,B都是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任何一个元素x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:x→y为从集合A到集合B的一个函数,记作y=f(x),x∈A,其中,x叫做自变量,x的取值范围A叫做函数f(x)的定义域,与x的值相对应的y值叫做函数值,函数值的集合{f(x)

3、x∈A}叫做函数f(x)的值域。显然值域是集合B的子集。3、构成函数的三要素: 定义域,值域,对应法则。值域可由定义域唯一确定,因此当两个函数的定义域和对应法则相同时,值域一定相同,

4、它们可以视为同一函数。4、函数的表示方法:(1)解析法:如果在函数y=f(x)(x∈A)中,f(x)是用代数式(或解析式)来表达的,则这种表示函数的方法叫做解析式法;(2)列表法:用表格的形式表示两个量之间函数关系的方法,称为列表法;(3)图象法:就是用函数图象表示两个变量之间的关系。注意:函数的图象可以是一个点,或一群孤立的点,或直线,或直线的一部分,或若干曲线组成。映射f:A→B的特征:(1)存在性:集合A中任一a在集合B中都有像;(2)惟一性:集合A中的任一a在集合B中的像只有一个;(3)方向性:从A到B的映射与从B到A的映射一般是不一样的;(4)集合

5、B中的元素在集合A中不一定有原象,若集合B中元素在集合A中有原像,原像不一定惟一。(1)函数两种定义的比较:     ①相同点:1°实质一致2°定义域,值域意义一致3°对应法则一致     ②不同点:1°传统定义从运动变化观点出发,对函数的描述直观,具体生动.                           2°近代定义从集合映射观点出发,描述更广泛,更具有一般性.(2)对函数定义的更深层次的思考:         映射与函数的关系:函数是一种特殊的映射f:A→B,其特殊性表现为集合A,B均为非空的数集..函数:AB是特殊的映射。特殊在定义域A和值域B都

6、是非空数集!据此可知函数图像与轴的垂线至多有一个公共点,但与轴垂线的公共点可能没有,也可能有任意个。小结:函数概念8个字:非空数集上的映射。对于映射这个概念,应明确以下几点: ①映射中的两个集合A和B可以是数集,点集或由图形组成的集合以及其它元素的集合.②映射是有方向的,A到B的映射与B到A的映射往往是不相同的.③映射要求对集合A中的每一个元素在集合B中都有象,而这个象是唯一确定的.这种集合A中元素的任意性和在集合B中对应的元素的唯一性构成了映射的核心.④映射允许集合B中的某些元素在集合A中没有原象,也就是由象组成的集合.⑤映射允许集合A中不同的元素在集合B

7、中有相同的象,即映射只能是“多对一”或“一对一”,不能是“一对多”. 一一映射:设A,B是两个集合,f:A→B是从集合A到集合B的映射,如果在这个映射的作用下,对于集合A中的不同的元素,在集合B中有不同的象,而且B中每一元素都有原象,那么这个映射叫做从A到B上的一一映射.一一映射既是一对一又是B无余的映射. 在理解映射概念时要注意:⑴A中元素必须都有象且唯一;⑵B中元素不一定都有原象,但原象不一定唯一。总结:取元任意性,成象唯一性。对函数概念的理解:函数三要素 (1)核心——对应法则等式y=f(x)表明,对于定义域中的任意x,在“对应法则f”的作用下,即可得

8、到y.因此,f是使“对应”得以实现的方法和途径.是联系x与y的纽带,从而是函数的核心.对于比较简单的函数,对应法则可以用一个解析式来表示,但在不少较为复杂的问题中,函数的对应法则f也可以采用其他方式(如图表或图象等).(2)定义域定义域是自变量x的取值范围,它是函数的一个不可缺少的组成部分,定义域不同而解析式相同的函数,应看作是两个不同的函数.在中学阶段所研究的函数通常都是能够用解析式表示的.如果没有特别说明,函数的定义域就是指能使这个式子有意义的所有实数x的集合.在实际问题中,还必须考虑自变量所代表的具体的量的允许取值范围问题.(3)值域值域是全体函数值所

9、组成的集合.在一般情况下,一旦定义域和对应法则确定,

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。