欢迎来到天天文库
浏览记录
ID:8765656
大小:1.12 MB
页数:17页
时间:2018-04-07
《2017 年全国各地中考数学模拟题分类52_方案设计与决策型问题(含答案)》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、http://www.czsx.com.cn52.方案设计与决策型问题解答题1、(2011年北京四中五模)我们知道,只有两边和一角对应相等的两个三角形不一定全等.你如何处理和安排这三个条件,使这两个三角形全等.请你仿照方案(1),写出方案(2)、(3).解:设有两边和一角对应相等的两个三角形.方案(1):若这角恰好是直角,则这两个三角形全等.方案(2):.方案(3):.答案:方案(2):该角恰为两边的夹角时;(3分)方案(3):该角为钝角时.(6分)2、(2011年浙江省杭州市模拟23)为执行中央“节能减排,美化环境,建设美丽新农村”的国策,我市某村计划建造A、B两种型号的沼
2、气池共20个,以解决该村所有农户的燃料问题.两种型号沼气池的占地面积、使用农户数及造价见下表:型号占地面积(单位:m2/个)使用农户数(单位:户/个)造价(单位:万元/个)A15182B20303已知可供建造沼气池的占地面积不超过365m2,该村农户共有492户.(1)满足条件的方案共有几种?写出解答过程.(2)通过计算判断,哪种建造方案最省钱.解:(1)设建造A型沼气池x个,则建造B型沼气池(20-x)个依题意得:解得:7≤x≤9∵x为整数∴x=7,8,9,∴满足条件的方案有三种.(2)设建造A型沼气池x个时,总费用为y万元,则:y=2x+3(20-x)=-x+60∵-1<
3、0,∴y随x增大而减小,当x=9时,y的值最小,此时y=51(万元)∴此时方案为:建造A型沼气池9个,建造B型沼气池11个.解法②:由(1)知共有三种方案,其费用分别为:方案一:建造A型沼气池7个,建造B型沼气池13个,总费用为:7×2+13×3=53(万元)-17-http://www.czsx.com.cn方案二:建造A型沼气池8个,建造B型沼气池12个,总费用为:8×2+12×3=52(万元)方案三:建造A型沼气池9个,建造B型沼气池11个,总费用为:9×2+11×3=51(万元)∴方案三最省钱.3、(2011年浙江省杭州市中考数学模拟22)(根据初中学业考试总复习P2
4、3例3改编)(2011年我国云南盈江发生地震,某地民政局迅速地组织了30吨饮用水和13吨粮食的救灾物资,准备租用甲、乙两种型号的货车将它们快速地运往灾区.已知甲型货车每辆可装饮用水5吨和粮食1吨,乙型货车每辆可装饮用水3吨和粮食2吨.已知可租用的甲种型号货车不超过4辆。(1)若一共租用了9辆货车,且使救灾物资一次性地运往灾区,共有哪几种运货方案?(2)若甲、乙两种货车的租车费用每辆分别为4000元、3500元,在(1)的方案中,哪种方案费用最低?最低是多少?(3)若甲、乙两种货车的租车费用不变,在保证救灾物资一次性运往灾区的情况下,还有没有费用更低的方案?若有,请直接写出该方
5、案和最低费用,若没有,说明理由。(租车数量不限)答案:解:(1)设甲型汽车x辆,则乙型汽车(9-x)辆解得2分因为x是整数,所以可以是2,3,4.即有甲型车2辆乙型车7辆;甲型车3辆乙型车6辆;甲型车4辆乙型车5辆三种方案2分(2)设车辆总费用为w元则2分因为k=500大于0,所以当x取最小值2时,费用最小。2分(3)有。甲型车3辆乙型车5辆.2分-17-http://www.czsx.com.cn4、(2011年北京四中模拟26)某公司经过市场调研,决定从明年起对甲、乙两种产品实行“限产压库”,计划这两种产品全年共生产20件,这20件的总产值P不少于1140万元,且不多于1
6、170万元。已知有关数据如下表所示:产品每件产品的产值甲45万元乙75万元(1)设安排生产甲产品X件(X为正整数),写出X应满足的不等式组;(2)请你帮助设计出所有符合题意的生产方案。答案:(1)1140≤45x+75(20-x)≤1170(2)11≤x≤12∵x为正整数∴当x=11时,20-11=9当=12时20-12=8∴生产甲产品11件,生产乙产品9件或生产甲产品12件,生产乙产品8件。5、(2011年北京四中模拟28)据悉,上海市发改委拟于今年4月27日举行居民用水价格调整听证会,届时将有两个方案提供听证。如图(1),射线OA、射线OB分别表示现行的、方案一的每户每月
7、的用水费y(元)与每户每月的用水量x(立方米)之间的函数关系,已知方案一的用水价比现行的用水价每立方米多0.96元;方案二如图(2)表格所示,每月的每立方米用水价格由该月的用水量决定,且第一、二、三级的用水价格之比为1︰1.5︰2(精确到0.01元后).(1)写出现行的用水价是每立方米多少元?(2)求图(1)中m的值和射线OB所对应的函数解析式,并写出定义域;(3)若小明家某月的用水量是a立方米,请分别写出三种情况下(现行的、方案一和方案二)该月的水费b(用a的代数式表示);图(1)x(立方米)y(元)
此文档下载收益归作者所有