年高考数学复习专题十七《探索性问题》

年高考数学复习专题十七《探索性问题》

ID:8753614

大小:1.31 MB

页数:19页

时间:2018-04-06

年高考数学复习专题十七《探索性问题》_第1页
年高考数学复习专题十七《探索性问题》_第2页
年高考数学复习专题十七《探索性问题》_第3页
年高考数学复习专题十七《探索性问题》_第4页
年高考数学复习专题十七《探索性问题》_第5页
资源描述:

《年高考数学复习专题十七《探索性问题》》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、专题 探索性问题【考点聚焦】考点1:对条件和结论的探索.考点2:猜想、归纳、证明问题.考点3:探索存在型问题.考点4:命题组合探索性问题.【自我检测】探索性问题是一种具有开放性和发散性的问题,此类题目的条件或结论不完备.要求解答者自己去探索,结合已有条件,进行观察、分析、比较和概括.它对学生的数学思想、数学意识及综合运用数学方法的能力提出了较高的要求.它有利于培养学生探索、分析、归纳、判断、讨论与证明等方面的能力,使学生经历一个发现问题、研究问题、解决问题的全过程.(以问题的形式考查学生对必须要具备的知识,对必须具备知识的友情提示)

2、【重点难点热点】问题1:条件追溯型这类问题的基本特征是:针对一个结论,条件未知需探索,或条件增删需确定,或条件正误需判断.解决这类问题的基本策略是:执果索因,先寻找结论成立的必要条件,再通过检验或认证找到结论成立的充分条件.在“执果索因”的过程中,常常会犯的一个错误是不考虑推理过程的可逆与否,误将必要条件当作充分条件,应引起注意.例1.例1.(02年上海)设函数是偶函数,则t的一个可能值是.分析与解答:∵函数∴.由此可得∴点评:本题为条件探索型题目,其结论明确,需要完备使得结论成立的充分条件,可将题设和结论都视为已知条件,进行演绎推

3、理推导出所需寻求的条件.这类题要求学生变换思维方向,有利于培养学生的逆向思维能力.演变1:(05年浙江)如图,在三棱锥P-ABC中,AB⊥BC,AB=BC=kPA,点O、D分别是AC、PC的中点,OP⊥底面ABC.(Ⅰ)求证:OD∥平面PAB;(Ⅱ)当k=时,求直线PA与平面PBC所成角的大小;(Ⅲ)当k取何值时,O在平面PBC内的射影恰好为△PBC的重心?点拨与提示:(Ⅱ)找出O点在平面PBC内的射影F,则∠ODF是OD与平面PBC所成的角.又OD∥PA,∠ODF即为所求;(Ⅲ)若F为PBC的重心,得B、F、D共线,进一步得BD⊥

4、PC,故PB=BC,得k=1.问题2:结论探索型这类问题的基本特征是:有条件而无结论或结论的正确与否需要确定.解决这类问题的策略是:先探索结论而后去论证结论.在探索过程中常可先从特殊情形入手,通过观察、分析、归纳、判断来作一番猜测,得出结论,再就一般情形去认证结论.例2.(04年上海)若干个能惟一确定一个数列的量称为该数列的“基本量”.设是公比为q的无穷等比数列,下列的四组量中,一定能成为该数列“基本量”的是第组.(写出所有符合要求的组号).①S1与S2;②a2与S3;③a1与an;④q与an.(其中n为大于1的整数,Sn为的前n项

5、和.)思路分析:研究能否由每一组的两个量求出的首项和公比.解:(1)由S1和S2,可知a1和a2.由可得公比q,故能确定数列是该数列的“基本量”.(2)由a2与S3,设其公比为q,首项为a1,可得∴,∴满足条件的q可能不存在,也可能不止一个,因而不能确定数列,故不一定是数列的基本量.(3)由a1与an,可得,当n为奇数时,q可能有两个值,故不一定能确定数列,所以也不一定是数列的一个基本量.(4)由q与an,由,故数列能够确定,是数列的一个基本量.故应填①、④评注:本题考查确定等比数列的条件,要求正确理解等比数列和新概念“基本量”的意

6、义.如何能够跳出题海,事半功倍,全面考察问题的各个方面,不仅可以训练自己的思维,而且可以纵观全局,从整体上对知识的全貌有一个较好的理解.演变2:某机床厂今年年初用98万元购进一台数控机床,并立即投入生产使用,计划第一年维修、保养费用12万元,从第二年开始,每年所需维修、保养费用比上一年增加4万元,该机床使用后,每年的总收入为50万元,设使用x年后数控机床的盈利额为y万元.(1)写出y与x之间的函数关系式;(2)从第几年开始,该机床开始盈利(盈利额为正值);(3)使用若干年后,对机床的处理方案有两种:(Ⅰ)当年平均盈利额达到最大值时,

7、以30万元价格处理该机床;(Ⅱ)当盈利额达到最大值时,以12万元价格处理该机床.问用哪种方案处理较为合算?请说明你的理由.点拨与提示:从第二年开始,每年所需维修、保养费用构成一个等差数列,x年的维修、保养费用总和为,求出x与y之间的函数关系.问题3:存在判断型这类问题的基本特征是:要判断在某些确定条件下的某一数学对象(数值、图形、函数等)是否存在或某一结论是否成立.解决这类问题的基本策略是:通常假定题中的数学对象存在(或结论成立)或暂且认可其中的一部分的结论,然后在这个前提下进行逻辑推理,若由此导出矛盾,则否定假设;否则,给出肯定结

8、论.其中反证法在解题中起着重要的作用.例3:(06年湖南)已知椭圆C1:,抛物线C2:,且C1、C2的公共弦AB过椭圆C1的右焦点.(Ⅰ)当AB⊥轴时,求、的值,并判断抛物线C2的焦点是否在直线AB上;(Ⅱ)是否存在、的值,使抛物线C

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。