欢迎来到天天文库
浏览记录
ID:8740719
大小:908.00 KB
页数:10页
时间:2018-04-06
《2012届广东省高三全真模拟卷数学文科试题第6套及答案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、广东省2012届高三全真模拟卷数学文科6一、选择题(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图所示,U表示全集,则用A、B表示阴影部分正确的是()A.B.C.D.2.若复数是实数(是虚数单位),则实数的值为()A.-2B.-1C.1D.23.已知向量=()A.B.C. D.4.已知数列是公差为的等差数列,且成等比数列,则的前项和为()A.B.C.D.5.下面说法正确的是( )A.命题“使得”的否定是“使得”;B.实数是成立的充要条件;C.设为简单命题,若“”为假命题,则“”也为假命题;D.命题“若则”的逆否命题为假命
2、题.6.已知、是两个不同平面,是两条不同直线,则下列命题不正确的是()A.则B.m∥n,m⊥α,则n⊥αC.n∥α,n⊥β,则α⊥βD.m∥β,m⊥n,则n⊥β7.一只小蜜蜂在一个棱长为的正方体内自由飞行,若蜜蜂在飞行过程中始终保持与正方体中心的距离不超过,称其为“安全飞行”,则蜜蜂“安全飞行”的概率为()A.B.C.D.8.阅读如图所示的算法框图,输出的结果S的值为()A.B.C.0D.9.已知△中,,,分别是,的等差中项与等比中项,则△的面积等于()A.B.C.或D.或10.已知为椭圆上的一点,分别为圆和圆上的点,则的最小值为()A.5B.7C.13D.15二、填空题:(本大题共
3、5小题,考生作答4小题,每小题5分,满分20分)(一)必做题(11~13题)11.一个容量为的样本,数据的分组及各组的频数如下表:(其中)分组[10,20)[20,30)[30,40)[40,50)[50,60)[60,70)频数2x3y24则样本在区间[10,50)上的频率为.12.已知函数那么不等式的解集为.13.若目标函数在约束条件下的最大值是,则直线截圆所得的弦长的范围是______________.(二)选做题:请在14、15题中选做一题,如果两题都做,以第一题的得分为最后得分.14.(坐标系与参数方程选做题)在极坐标系中,直线被曲线:所截得弦的中点的极坐标为.ODCAPB
4、15.(几何证明选讲选做题)如图所示,AB是半径等于的⊙的直径,CD是⊙的弦,BA,DC的延长线交于点P,若PA=4,PC=5,则___________.三、解答题(共80分)16.(本题满分12分)已知向量,且满足.(1)求函数的解析式;(2)求函数的最大值及其对应的值;(3)若,求的值.17.(本题满分12分)某学校共有高一、高二、高三学生名,各年级男、女生人数如下图:已知在全校学生中随机抽取1名,抽到高二年级女生的概率是0.19.(1)求的值;(2)现用分层抽样的方法在全校抽取名学生,问应在高三年级抽取多少名?(3)已知,求高三年级中女生比男生多的概率.18.(本题满分14分)
5、如图:、是以为直径的圆上两点,,,是上一点,且,将圆沿直径折起,使点在平面的射影在上,已知.(1)求证:平面;(2)求证:平面;(3)求三棱锥的体积.19.(本题满分14分)设曲线在点处的切线与y轴交于点.(1)求数列的通项公式;(2)设数列的前项和为,猜测的最大值并证明你的结论.20.(本题满分14分)已知椭圆的离心率,且椭圆过点.(1)求椭圆的方程;(2)若为椭圆上的动点,为椭圆的右焦点,以为圆心,长为半径作圆,过点作圆的两条切线,(,为切点),求点的坐标,使得四边形的面积最大.21.(本题满分14分)已知函数.(1)若,试确定函数的单调区间;(2)若,且对于任意,恒成立,试确定
6、实数的取值范围;(3)设函数,求证:.参考答案一.选择题(每小题5分,共50分)题号12345678910答案ACBCDDBACB二、填空题:(每小题5分,共20分)11.12.13.14.15.(或三、解答题:(共80分)16.解:(1),即,所以所以…………………………………………4分(2)当,即时,………………8分(3),即……………………………………………………9分两边平方得:,所以…………………………10分…………………………12分17.解:(1)由已知有;3分(2)由(1)知高二男女生一起人,又高一学生人,所以高三男女生一起人,按分层抽样,高三年级应抽取人;7分(3)因为
7、,所以基本事件有:一共11个基本事件.9分其中女生比男生多,即的基本事件有:共5个基本事件,11分故女生必男生多的事件的概率为12分18解:(1)证明:依题意:…………………………2分平面∴……………2分∴平面.……………………………5分(2)证明:中,,∴………………………………6分中,,∴.……………………………………………………………………7分∴.…………………………………………………………8分∴在平面外∴平面.…………………………………………………
此文档下载收益归作者所有